A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Individualized, connectome-based, non-invasive stimulation of OCD deep-brain targets: A proof-of-concept. | LitMetric

Individualized, connectome-based, non-invasive stimulation of OCD deep-brain targets: A proof-of-concept.

Neuroimage

Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.

Published: March 2024

Treatment-resistant obsessive-compulsive disorder (OCD) generally improves with deep-brain stimulation (DBS), thought to modulate neural activity at both the implantation site and in connected brain regions. However, its invasive nature, side-effects, and lack of customization, make non-invasive treatments preferable. Harnessing the established remote effects of cortical transcranial magnetic stimulation (TMS), connectivity-based approaches have emerged for depression that aim at influencing distant regions connected to the stimulation site. We here investigated whether effective OCD DBS targets (here subthalamic nucleus [STN] and nucleus accumbens [NAc]) could be modulated non-invasively with TMS. In a proof-of-concept study with nine healthy individuals, we used 7T magnetic resonance imaging (MRI) and probabilistic tractography to reconstruct the fiber tracts traversing manually segmented STN/NAc. Two TMS targets were individually selected based on the strength of their structural connectivity to either the STN, or both the STN and NAc. In a sham-controlled, within-subject cross-over design, TMS was administered over the personalized targets, located around the precentral and middle frontal gyrus. Resting-state functional 3T MRI was acquired before, and at 5 and 25 min after stimulation to investigate TMS-induced changes in the functional connectivity of the STN and NAc with other regions of the brain. Static and dynamic seed-to-voxel correlation analyses were conducted. TMS over both targets was able to modulate the functional connectivity of the STN and NAc, engaging both overlapping and distinct regions, and unfolding following different temporal dynamics. Given the relevance of the engaged connected regions to OCD pathology, we argue that a personalized, connectivity-based procedure is worth investigating as potential treatment for refractory OCD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2024.120527DOI Listing

Publication Analysis

Top Keywords

connectivity stn
12
stn nac
12
tms targets
8
functional connectivity
8
stimulation
5
ocd
5
targets
5
regions
5
tms
5
individualized connectome-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!