Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Colorectal cancer (CRC) ranks as the second leading cause of cancer-related deaths. This study aimed to predict survival outcomes of CRC patients using machine learning (ML) methods.
Material And Methods: A retrospective analysis included 1853 CRC patients admitted to three prominent tertiary hospitals in Iran from October 2006 to July 2019. Six ML methods, namely logistic regression (LR), Naïve Bayes (NB), Support Vector Machine (SVM), Neural Network (NN), Decision Tree (DT), and Light Gradient Boosting Machine (LGBM), were developed with 10-fold cross-validation. Feature selection employed the Random Forest method based on mean decrease GINI criteria. Model performance was assessed using Area Under the Curve (AUC).
Results: Time from diagnosis, age, tumor size, metastatic status, lymph node involvement, and treatment type emerged as crucial predictors of survival based on mean decrease GINI. The NB (AUC = 0.70, 95% Confidence Interval [CI] 0.65-0.75) and LGBM (AUC = 0.70, 95% CI 0.65-0.75) models achieved the highest predictive AUC values for CRC patient survival.
Conclusions: This study highlights the significance of variables including time from diagnosis, age, tumor size, metastatic status, lymph node involvement, and treatment type in predicting CRC survival. The NB model exhibited optimal efficacy in mortality prediction, maintaining a balanced sensitivity and specificity. Policy recommendations encompass early diagnosis and treatment initiation for CRC patients, improved data collection through digital health records and standardized protocols, support for predictive analytics integration in clinical decisions, and the inclusion of identified prognostic variables in treatment guidelines to enhance patient outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10911721 | PMC |
http://dx.doi.org/10.31557/APJCP.2024.25.1.333 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!