A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep Learning Identifies High-Quality Fundus Photographs and Increases Accuracy in Automated Primary Open Angle Glaucoma Detection. | LitMetric

Purpose: To develop and evaluate a deep learning (DL) model to assess fundus photograph quality, and quantitatively measure its impact on automated POAG detection in independent study populations.

Methods: Image quality ground truth was determined by manual review of 2815 fundus photographs of healthy and POAG eyes from the Diagnostic Innovations in Glaucoma Study and African Descent and Glaucoma Evaluation Study (DIGS/ADAGES), as well as 11,350 from the Ocular Hypertension Treatment Study (OHTS). Human experts assessed a photograph as high quality if of sufficient quality to determine POAG status and poor quality if not. A DL quality model was trained on photographs from DIGS/ADAGES and tested on OHTS. The effect of DL quality assessment on DL POAG detection was measured using area under the receiver operating characteristic (AUROC).

Results: The DL quality model yielded an AUROC of 0.97 for differentiating between high- and low-quality photographs; qualitative human review affirmed high model performance. Diagnostic accuracy of the DL POAG model was significantly greater (P < 0.001) in good (AUROC, 0.87; 95% CI, 0.80-0.92) compared with poor quality photographs (AUROC, 0.77; 95% CI, 0.67-0.88).

Conclusions: The DL quality model was able to accurately assess fundus photograph quality. Using automated quality assessment to filter out low-quality photographs increased the accuracy of a DL POAG detection model.

Translational Relevance: Incorporating DL quality assessment into automated review of fundus photographs can help to decrease the burden of manual review and improve accuracy for automated DL POAG detection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10829806PMC
http://dx.doi.org/10.1167/tvst.13.1.23DOI Listing

Publication Analysis

Top Keywords

poag detection
16
quality
13
fundus photographs
12
quality model
12
quality assessment
12
deep learning
8
accuracy automated
8
assess fundus
8
fundus photograph
8
photograph quality
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!