The complex dynamics of elastic fibers in viscous fluids are central to many biological and industrial systems. Fluid-structure interactions underlying these dynamics govern the shape and transport of flexible fibers, and understanding these interactions can help tune flow properties in applications such as microfluidic separation, printing and clogging. In this work, we use slender-body theory to study micromechanical dynamics that arise from the coupling between the elastic backbone of a fiber and the local straining flow that contributes to filament flipping and cross-streamline migration. The resulting transverse drift is unbiased in either direction in simple shear flow. However, a non-uniform shear rate results in bias towards regions of high shear, which we connect to the shape transitions during flips. We discover a depletion layer that forms near the boundaries of pressure-driven channel flow due to the competition between such a cross-streamline drift and steric exclusion from the walls. Finally, we develop scaling laws for the curvature of filaments during flip events, demonstrating the origin of the drift bias in non-uniform flows, and confirm this behavior from our simulations. Put together, these results shed light on the role of a local and dominant coupling between elasticity and viscous resistance in dictating long-term dynamics and transport of elastic fibers in confined flows.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3sm01499a | DOI Listing |
Drug Deliv
December 2025
Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE) Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand.
Biopolymers, such as collagens, elastin, silk fibroin, spider silk, fibrin, keratin, and resilin have gained significant interest for their potential biomedical applications due to their biocompatibility, biodegradability, and mechanical properties. This review focuses on the design and integration of biomimetic peptides into these biopolymer platforms to control the release of bioactive molecules, thereby enhancing their functionality for drug delivery, tissue engineering, and regenerative medicine. Elastin-like polypeptides (ELPs) and silk fibroin repeats, for example, demonstrate how engineered peptides can mimic natural protein domains to modulate material properties and drug release profiles.
View Article and Find Full Text PDFJ Cancer
January 2025
Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China.
The pathogenesis of metabolic dysfunction-associated steatotic liver disease-associated hepatocellular carcinoma (MASLD-HCC) is complex and exhibits sex-specific differences. Effective methods for monitoring MASLD progression to HCC are lacking. Transcriptomic data from liver tissue samples sourced from multiple public databases were integrated.
View Article and Find Full Text PDFLaryngoscope Investig Otolaryngol
February 2025
Objectives: This study aimed to investigate the histological and ultrastructural features of the elastic cartilage at the tip of the vocal process in the arytenoid cartilage, which is essential for laryngeal biomechanics.
Methods: Five larynges, including the vocal folds and epiglottis, were examined using transmission electron microscopy. The elastic cartilage at the tip of the vocal process was compared to the epiglottic cartilage within the same larynx to elucidate structural differences.
Commun Biol
January 2025
Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK.
Form-function relationships often have tradeoffs: if a material is tough, it is often inflexible, and vice versa. This is particularly relevant for the elephant trunk, where the skin should be protective yet elastic. To investigate how this is achieved, we used classical histochemical staining and second harmonic generation microscopy to describe the morphology and composition of elephant trunk skin.
View Article and Find Full Text PDFJ Biomed Opt
June 2024
Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States.
Significance: Pulse oximeter measurements are commonly relied upon for managing patient care and thus often require human testing before they can be legally marketed. Recent clinical studies have also identified disparities in their measurement of blood oxygen saturation by race or skin pigmentation.
Aim: The development of a reliable bench-top performance test method based on tissue-simulating phantoms has the potential to facilitate pre-market assessment and the development of more accurate and equitable devices.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!