Biochemical Markers for Liver Injury in Zebrafish Larvae.

Methods Mol Biol

Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil.

Published: January 2024

Liver plays a crucial role in detoxification processes and metabolism of xenobiotics, and therefore, it is a target organ of toxicity of different classes of chemicals. In this context, some key enzymes present in liver are considered to be good biochemical markers of hepatic damage and can have their activities determined via spectrophotometry. Aspartate and alanine aminotransferases, alkaline phosphatase, lactate dehydrogenase, and glutathione peroxidase are enzymes that have activities often changed in response to hepatotoxic compounds and can be accessed through the larval period of zebrafish (Danio rerio). In this chapter, we described methodologies for analyses of these five biomarkers in pooled zebrafish larvae through spectrophotometry.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3625-1_29DOI Listing

Publication Analysis

Top Keywords

biochemical markers
8
zebrafish larvae
8
markers liver
4
liver injury
4
injury zebrafish
4
larvae liver
4
liver plays
4
plays crucial
4
crucial role
4
role detoxification
4

Similar Publications

Cadmium (Cd) is a toxic heavy metal which induces vascular disorders. Previous studies suggest that Cd in the bloodstream affects vascular endothelial cells (ECs), potentially contributing to vascular-related diseases. However, the molecular mechanisms of effects of Cd on ECs remain poorly understood.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) and transfer RNA-derived stress-induced RNAs (tiRNAs) have emerged as crucial players in the post-transcriptional regulation of gene expression in various cellular processes, including immunity and host defense against infections. In recent years, increasing evidence has highlighted their complex role in influencing the host response during viral and bacterial infections. miRNAs have been shown to play multiple roles in host-pathogen interaction like TLR activation and altered disease virulence during bacterial infections.

View Article and Find Full Text PDF

Early cancer detection substantially improves the rate of patient survival; however, conventional screening methods are directed at single anatomical sites and focus primarily on a limited number of cancers, such as gastric, colorectal, lung, breast, and cervical cancer. Additionally, several cancers are inadequately screened, hindering early detection of 45.5% cases.

View Article and Find Full Text PDF

CircRNAs in extracellular vesicles associated with triple-negative breast cancer.

Cell Mol Biol (Noisy-le-grand)

January 2025

Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh-11623, Saudi Arabia.

Article Synopsis
  • Triple-negative breast cancer (TNBC) is an aggressive form of cancer that often spreads to distant sites in the body, and understanding how it metastasizes is crucial for treatment.
  • Exosomes, which are small extracellular vesicles that carry RNA molecules, play a significant role in TNBC metastasis and present new opportunities for diagnosing and treating the disease via liquid biopsy.
  • Circular RNAs (circRNAs), a subtype of noncoding RNAs found in exosomes, can influence gene expression and are abundant in EVs; they may enhance communication between cancer cells, thereby influencing TNBC progression and offering potential biomarkers for prognosis and monitoring.
View Article and Find Full Text PDF

Chronic kidney disease (CKD) is often complicated by diabetes, impacting various biochemical and immunological markers. This study aimed to investigate the relationship between irisin, apelin-13, and immunological markers IL-1α and IL-1β in diabetic patients with CKD. This cross-sectional study was conducted from January to June 2023 in a tertiary care hospital in Tikrit City, Iraq.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!