Human beings are continuously exposed to various toxic substances throughout their lives, which affect their reproductive health and eventually the offspring they give birth to. Mainly, these toxins damage the heart and neurological development of the newborn, but most recently, they have begun to affect the musculoskeletal system as well. These toxins are usually present in food, pharmaceuticals, cosmetics, or even the polluted air that people breathe; as a result, the prevalence of birth defects is steadily rising. For this reason, it becomes a necessity to deploy a new set of assays to test for such toxins in industries to decrease the occurrence of developmental toxicity. These assays are exceedingly expensive when carried out conventionally using animal models or cells from such sources and have a lower predictive value due to the vast variation between animals and humans. To overcome such major problems, human pluripotent stem cells are now frequently used for these assays. These cells are easily available, are quickly generated from somatic cells (induce pluripotent stem cells), can be of human origin without harming people, and eliminate animal harm, which makes them the top choice of scientists for carrying out any in vitro developmental toxicity assays.This chapter, therefore, provides an overview of several steps that can be used to predict a compound's developmental toxicity by utilizing human pluripotent stem cells. Here, the easiest and most effective procedure has been outlined that can screen many compounds simultaneously.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3625-1_8DOI Listing

Publication Analysis

Top Keywords

pluripotent stem
16
developmental toxicity
16
human pluripotent
12
stem cells
12
cells
6
human
5
stem
4
stem cell-based
4
assays
4
cell-based assays
4

Similar Publications

Liver tissue engineering offers potential in liver transplantation, while the development of hydrogels for scalable scaffolds incorporating natural components and effective functionalities is ongoing. Here, we propose a novel microfluidic 3D printing hydrogel derived from decellularized fish liver extracellular matrix for liver regeneration. By decellularizing fish liver and combining it with gelatin methacryloyl, the hydrogel scaffold retains essential endogenous growth factors such as collagen and glycosaminoglycans.

View Article and Find Full Text PDF

The potential role of SCF combined with DPCs in facial nerve repair.

J Mol Histol

January 2025

School of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150000, China.

Facial nerve injuries lead to significant functional impairments and psychological distress for affected patients. Effective repair of these injuries remains a challenge. For longer nerve gaps, the regeneration outcomes after nerve grafting remain suboptimal due to limited sources and postoperative immune responses.

View Article and Find Full Text PDF

Mouse Intestinal Organoid Culture Protocol.

Methods Mol Biol

January 2025

Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, Turkey.

The discovery of leucine-rich-containing G-protein-coupled receptor 5 (Lgr5) as an intestinal adult stem cell marker had blazed a trail in stem cell biology and laid the foundations of modern organoid technology. Up to date, several well-established intestinal organoid protocols have been reported in the literature from different sources, including adult and induced pluripotent stem cells. Here, we demonstrate a BALB/c mouse-derived intestinal organoid culture protocol, passaging, and cryopreservation procedures.

View Article and Find Full Text PDF

Astroglia are integral to brain development and the emergence of neurodevelopmental disorders. However, studying the pathophysiology of human astroglia using brain organoid models has been hindered by inefficient astrogliogenesis. In this study, we introduce a robust method for generating astroglia-enriched organoids through BMP4 treatment during the neural differentiation phase of organoid development.

View Article and Find Full Text PDF

Inhibin, β, which is also known as INHBA, encodes a protein that belongs to the Transforming Growth factor-β (TGF-β) superfamily, which plays a pivotal role in cancer. Gastrointestinal tract (GI tract) cancer refers to the cancers that develop in the colon, liver, esophagus, stomach, rectum, pancreas, and bile ducts of the digestive system. The role of INHBA in all GI tract cancers remains understudied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!