The altered activity generated by corneal neuronal injury can result in morphological and physiological changes in the architecture of synaptic connections in the nervous system. These changes can alter the sensitivity of neurons (both second-order and higher-order projection) projecting pain signals. A complex process involving different cell types, molecules, nerves, dendritic cells, neurokines, neuropeptides, and axon guidance molecules causes a high level of sensory rearrangement, which is germane to all the phases in the pathomechanism of corneal neuropathic pain. Immune cells migrating to the region of nerve injury assist in pain generation by secreting neurokines that ensure nerve depolarization. Furthermore, excitability in the central pain pathway is perpetuated by local activation of microglia in the trigeminal ganglion and alterations of the descending inhibitory modulation for corneal pain arriving from central nervous system. Corneal neuropathic pain may be facilitated by dysfunctional structures in the central somatosensory nervous system due to a lesion, altered synaptogenesis, or genetic abnormality. Understanding these important pathways will provide novel therapeutic insight.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jnr.25285 | DOI Listing |
Surv Ophthalmol
January 2025
Michigan Medicine, Department of Ophthalmology and Visual Sciences, Ann Arbor, MI, USA.
Chronic ocular surface pain (COSP) refers to interrelated symptoms such as burning, aching, and irritation and can occur as an isolated condition or comorbid with numerous ocular disorders, including dry eye syndrome Treatments for COSP are largely aimed at the ocular surface and modulating pain arising from damaged corneal nerves; however, the average impact of these treatments on COSP are low to absent. A potential explanation for this is that, in a subset of patients with COSP, individuals have amplified and/or dysregulated neural signaling and sensory processing within the central nervous system (CNS). As in other chronic pain conditions, this might be the pathogenic mechanism primarily responsible for maintaining pain - a phenomenon now referred to as nociplastic pain.
View Article and Find Full Text PDFPain Ther
January 2025
Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, Clinical Sciences Centre, University Hospital Aintree, University of Liverpool and Liverpool University Hospital NHS Foundation Trust, Liverpool, L9 7AL, UK.
Fibromyalgia syndrome (FMS) presents a complex and challenging disorder in both the diagnosis and treatment, with emerging evidence suggesting a role of small fibre pathology (SFP) in its pathophysiology. The significance of the role of SFP in FMS remains unclear; however, recent evidence suggests degeneration and dysfunction of the peripheral nervous system, particularly small unmyelinated fibres, which may influence pathophysiology and underlying phenotype. Both skin biopsy and corneal confocal microscopy (CCM) have consistently demonstrated that ~ 50% of people with FMS have SFP.
View Article and Find Full Text PDFClin Ophthalmol
December 2024
Department of Sense Organs, Sapienza University, Rome, Italy.
Purpose: Osteogenesis imperfecta (OI) is a rare hereditary disorder of the connective tissue. Despite recent attention to corneal abnormalities in OI, understanding remains limited. This study aimed to comprehensively evaluate corneal changes in a large sample of OI patients compared to controls using in vivo confocal microscopy (IVCM).
View Article and Find Full Text PDFPain Rep
February 2025
Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.
Introduction: Pain phenomenology in patients with fibromyalgia syndrome (FMS) shows considerable overlap with neuropathic pain. Altered neural processing leading to symptoms of neuropathic pain can occur at the level of the spinal cord, and 1 potential mechanism is spinal disinhibition. A biomarker of spinal disinhibition is impaired H-reflex rate-dependent depression (HRDD).
View Article and Find Full Text PDFCornea
October 2024
Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center and Tufts University School of Medicine, Boston, MA; and.
Purpose: Neuropathic corneal pain (NCP) has been recognized as a distinct disease, yet treatment options remain limited. The aim of this pilot study was to explore the effectiveness of extranasal neurostimulation (EXNS) as a potential pain relief strategy for individuals with the peripheral component of NCP.
Methods: A retrospective study was performed to identify patients who were diagnosed with refractory peripheral or mixed NCP and subsequently underwent a single session of EXNS.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!