AI Article Synopsis

  • New two-dimensional (2D) models for heating, cooling, and evaporation of sessile droplets are introduced, improving upon previous one-dimensional (1D) models by considering the spatial distribution of heat.
  • The advanced 2D model uses COMSOL Multiphysics to numerically solve equations related to mass, momentum, vapor mass fraction, and energy, while the simpler models retain assumptions about droplet shape and do not account for factors like droplet deformation or the Marangoni effect.
  • Validation of the models against experimental data from distilled water droplets indicates that the simplest 1D model effectively predicts droplet radius changes, while the advanced 2D model aligns closely with observed temperature changes during evaporation.

Article Abstract

New advanced and simple two-dimensional (2D) models of sessile droplet heating and cooling and evaporation are suggested. In contrast to the earlier developed one-dimensional (1D) model, based on the assumption that heat supplied from the supporting surface is homogeneously and instantaneously spread throughout the droplet, both new 2D models consider the spatial distribution of this heat. The advanced 2D model is based on the numerical solution to the equations of conservation of mass, momentum, vapor mass fraction, and energy with standard boundary and initial conditions, using COMSOL Multiphysics code. Simple 2D and 1D models assume that droplets retain their truncated spherical shapes during the evaporation process. In the 1D model, the analytical solution to the 1D heat conduction equation inside the droplet is implemented into a numerical code. In the simple 2D model, the 2D version of this equation is solved numerically using COMSOL Multiphysics code. Droplet deformation, temperature gradients along the droplet surface, and the Marangoni effect are not considered in this model. The predictions of all three models are validated using in-house experimental data obtained from studies of sessile droplets of distilled water with initial volumes of 5.2, 3.2, and 2.2 μL, at an ambient temperature of 298.15 K, and at atmospheric pressure. The observed values of normalized droplet radii squared are shown to be close to those predicted by all three models. This allows us to recommend the application of the simplest 1D model for predicting this parameter. The time dependences of the droplet average surface temperature predicted by the advanced 2D model are shown to be close to those observed experimentally. The simple 2D and 1D models can correctly predict the initial rapid decrease in droplet average surface temperature followed by its gradual increase, in agreement with experimental data.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.3c03171DOI Listing

Publication Analysis

Top Keywords

sessile droplets
8
droplet
8
model based
8
advanced model
8
comsol multiphysics
8
multiphysics code
8
code simple
8
simple models
8
three models
8
experimental data
8

Similar Publications

Effect of Photolithographic Biomimetic Surface Microstructure on Wettability and Droplet Evaporation Process.

Biomimetics (Basel)

November 2024

Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK.

In nature, engineering technology and daily life, wetting phenomena are widespread and have essential roles and significance. Bionics is becoming increasingly important nowadays and exploring the mechanism that influences biomimetic surface microstructure on droplet wetting process and heat and mass transfer characteristics is becoming more meaningful. In this paper, based on photolithography technology, SU-8 photoresist was used as raw material to prepare biomimetic surfaces with microstructures in various arrangements.

View Article and Find Full Text PDF

Preservation of wetting ridges using field-induced plasticity of magnetoactive elastomers.

J Colloid Interface Sci

December 2024

East Bavarian Centre for Intelligent Materials (EBACIM), Ostbayerische Technische Hochschule Regensburg, Seybothstr. 2, Regensburg, 93053, Germany.

Hypothesis: The presence of a wetting ridge is crucial for many wetting phenomena on soft substrates. Conventional experimental observations of a wetting ridge require permanent presence of a droplet. The magnetic field-induced plasticity effect (FIPE) of soft magnetoative elastomers (MAEs) allows one to overcome this limitation.

View Article and Find Full Text PDF

Effect of Mixed Surfactant on Evaporation Driven Salt Crystallization Morphology in Sessile Droplets.

Langmuir

December 2024

School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.

Extensive studies have been conducted to manipulate the morphology of sodium chloride salt crystals to tailor their physical and chemical properties. Among the myriad factors considered, the effects of the substrate and additives have profound impacts on the types of salt depositions. Surface charge effects and various ionic surfactants influence ion movement, resulting in diverse crystal morphologies.

View Article and Find Full Text PDF

Exploration of contact angle hysteresis mechanisms: From microscopic to macroscopic.

J Chem Phys

November 2024

Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Pl. 1, 76344 Eggenstein-Leopoldshafen, Germany.

Variations from equilibrium Young's angle, known as contact angle hysteresis (CAH), are frequently observed upon droplet deposition on a solid surface. This ubiquitous phenomenon indicates the presence of multiple local surface energy minima for the sessile droplet. Previous research primarily explains CAH via considering macroscopic roughness, such as topographical defects, which alter the effective interfacial energy between the fluid phase and the solid phase, thereby shifting the global surface energy minimum.

View Article and Find Full Text PDF

Adsorbed microdroplets are mobile at the nanoscale.

Proc Natl Acad Sci U S A

November 2024

Department of Chemistry, Purdue University, West Lafayette, IN 47907.

The extraordinary chemistry of microdroplets has reshaped how we as a community think about reactivity near multiphase boundaries. Even though interesting physico-chemical properties of microdroplets have been reported, "sessile" droplets' inherent mobility, which has been implicated as a driving force for curious chemistry, has not been well established. This paper seeks to answer the question: Can adsorbed microdroplets be mobile at the nanoscale? This is a tantalizing question, as almost no measurement technique has the spatiotemporal resolution to answer it.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!