A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Measuring the performance of an artificial intelligence-based robot that classifies blood tubes and performs quality control in terms of preanalytical errors: A preliminary study. | LitMetric

Objectives: Artificial intelligence-based robotic systems are increasingly used in medical laboratories. This study aimed to test the performance of KANKA (Labenko), a stand-alone, artificial intelligence-based robot that performs sorting and preanalytical quality control of blood tubes.

Methods: KANKA is designed to perform preanalytical quality control with respect to error control and preanalytical sorting of blood tubes. To detect sorting errors and preanalytical inappropriateness within the routine work of the laboratory, a total of 1000 blood tubes were presented to the KANKA robot in 7 scenarios. These scenarios encompassed various days and runs, with 5 repetitions each, resulting in a total of 5000 instances of sorting and detection of preanalytical errors. As the gold standard, 2 experts working in the same laboratory identified and recorded the correct sorting and preanalytical errors. The success rate of KANKA was calculated for both the accurate tubes and those tubes with inappropriate identification.

Results: KANKA achieved an overall accuracy rate of 99.98% and 100% in detecting tubes with preanalytical errors. It was found that KANKA can perform the control and sorting of 311 blood tubes per hour in terms of preanalytical errors.

Conclusions: KANKA categorizes and records problem-free tubes according to laboratory subunits while identifying and classifying tubes with preanalytical inappropriateness into the correct error sections. As a blood acceptance and tube sorting system, KANKA has the potential to save labor and enhance the quality of the preanalytical process.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ajcp/aqad179DOI Listing

Publication Analysis

Top Keywords

blood tubes
16
preanalytical errors
16
artificial intelligence-based
12
quality control
12
preanalytical
11
tubes
9
intelligence-based robot
8
terms preanalytical
8
kanka
8
sorting preanalytical
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!