To produce sounds, we adjust the tension of our vocal folds to shape their properties and control the pitch. This efficient mechanism offers inspiration for designing reconfigurable materials and adaptable soft robots. However, understanding how flexible structures respond to a significant static strain is not straightforward. This complexity also limits the precision of medical imaging when applied to tensioned organs like muscles, tendons, ligaments and blood vessels among others. In this article, we experimentally and theoretically explore the dynamics of a soft strip subject to a substantial static extension, up to 180%. Our observations reveal a few intriguing effects, such as the resilience of certain vibrational modes to a static deformation. These observations are supported by a model based on the incremental displacement theory. This has promising practical implications for characterizing soft materials but also for scenarios where external actions can be used to tune properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3sm01485a | DOI Listing |
Soft Matter
January 2025
Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
In polymerization-induced phase separation, the impact of polymer-substrate interaction on the dynamics of phase separation for polymer blends is important in determining the final morphology and properties of polymer materials as the surface can act as another driving force for phase separation other than polymerization. We modify the previously-developed polymerizing Cahn-Hilliard (pCH) method by adding a surface potential to model the phase separation behavior of a mixture of two species independently undergoing linear step-growth polymerization in the presence of a surface. In our approach, we explicitly model polydispersity by separately considering different molecular-weight components with their own respective diffusion constants, and with the surface potential preferentially acting on only one species.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA.
The capillary break-up of complex fluid filaments occurs in many scientific and industrial applications, particularly in bio-printing where both liquid and polymerized droplets exist in the fluid. The simultaneous presence of fluid and solid particles within a carrier fluid and their interactions lead to deviations in the filament break-up from the well-established capillary breakup dynamics of single-phase liquids. To examine the significance of the dispersed phase and the internal interactions between liquid droplets and solid particles, we prepare emulsions through photopolymerization and conduct experimental investigations into the pinch-off dynamics of fluid filaments, focusing on the impact of varying concentrations of liquid droplets (before polymerization) and polymerized droplets.
View Article and Find Full Text PDFMol Pharm
January 2025
Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
The exposure of mRNA to water is likely to contribute to the instability of RNA vaccines upon storage under nonfrozen conditions. Using atomistic molecular dynamics (MD) simulations, we investigated the pH-dependent structural transition and water penetration behavior of mRNA-lipid nanoparticles (LNPs) with the compositions of Moderna and Pfizer vaccines against COVID-19 in an aqueous solution. It was revealed that the ionizable lipid (IL) membranes of LNPs were extremely sensitive to pH, and the increased acidity could cause a rapid membrane collapse and hydration swelling of LNP, confirming the high releasing efficiency of both LNP vaccines.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemical Engineering, Technion-IIT, Haifa 32000, Israel.
A comprehensive approach enabling a quantitative interpretation of poly-l-arginine (PARG) adsorption kinetics at solid/electrolyte interfaces was developed. The first step involved all-atom molecular dynamics (MD) modeling of physicochemical characteristics yielding PARG molecule conformations, its contour length, and the cross-section area. It was also shown that PARG molecules, even in concentrated electrolyte solutions (100 mM NaCl), assume a largely elongated shape with an aspect ratio of 36.
View Article and Find Full Text PDFMater Horiz
January 2025
Soft Matter Lab, Department of Chemical Engineering, Shiv Nadar Institution of Eminence Deemed to be University, Greater Noida, 201314, India.
This study focuses on fabricating photonic crystals (PCs) by surfactant-based particle capture at the gas-liquid interface of evaporating sessile droplets. The captured particles form interfacial films, resulting in ordered monolayer depositions manifesting iridescent structural colors. The particle dynamics behind the ordered arrangement is delineated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!