A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Artificial intelligence-based prediction of the rheological properties of hydrocolloids for plant-based meat analogues. | LitMetric

AI Article Synopsis

  • A study was done on finding alternatives to methylcellulose in plant-based meat analogues, focusing on how different hydrocolloids affect viscosity and texture.
  • The researchers used machine learning models to predict the flow behavior of six hydrocolloid solutions, finding that methylcellulose had a unique viscosity response to temperature changes.
  • The optimized multilayer perceptron model outperformed traditional equations in viscosity prediction, showing strong correlation with the textural properties of the meat substitutes.

Article Abstract

Background: Methylcellulose has been applied as a primary binding agent to control the quality attributes of plant-based meat analogues. H owever, a great deal of effort has been made to search for hydrocolloids to replace methylcellulose because of increasing awareness of clean labels. In this study, a machine learning framework was proposed in order to describe and predict the flow behavior of six hydrocolloid solutions, and the predicted viscosities were correlated with the textural features of their corresponding plant-based meat analogues.

Results: Different shear-thinning and Newtonian behaviors were observed depending on the type of hydrocolloid and the shear rate. Methylcellulose exhibited an increasing viscosity pattern with increasing temperature, compared to the other hydrocolloids. The machine learning algorithms (random forest and multilayer perceptron models) showed a better viscosity fitting performance than the constitutive equations (power law and Cross models). In addition, three hyperparameters of the multilayer perceptron model (optimizer, learning rate, and the number of hidden layers) were tuned using the Bayesian optimization algorithm.

Conclusion: The optimized multilayer perceptron model exhibited superior performance in viscosity prediction (R = 0.9944-0.9961/RMSE = 0.0545-0.0708). Furthermore, the machine learning-predicted viscosities overall showed similar patterns to the textural parameters of the meat analogues. © 2024 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.13334DOI Listing

Publication Analysis

Top Keywords

plant-based meat
12
meat analogues
12
multilayer perceptron
12
machine learning
8
perceptron model
8
artificial intelligence-based
4
intelligence-based prediction
4
prediction rheological
4
rheological properties
4
properties hydrocolloids
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: