A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predictive Models and Impact of Interfacial Contacts and Amino Acids on Protein-Protein Binding Affinity. | LitMetric

Protein-protein interactions (PPIs) play a central role in nearly all cellular processes. The strength of the binding in a PPI is characterized by the binding affinity (BA) and is a key factor in controlling protein-protein complex formation and defining the structure-function relationship. Despite advancements in understanding protein-protein binding, much remains unknown about the interfacial region and its association with BA. New models are needed to predict BA with improved accuracy for therapeutic design. Here, we use machine learning approaches to examine how well different types of interfacial contacts can be used to predict experimentally determined BA and to reveal the impact of the specific amino acids at the binding interface on BA. We create a series of multivariate linear regression models incorporating different contact features at both residue and atomic levels and examine how different methods of identifying and characterizing these properties impact the performance of these models. Particularly, we introduce a new and simple approach to predict BA based on the quantities of specific amino acids at the protein-protein interface. We found that the numbers of specific amino acids at the protein-protein interface were correlated with BA. We show that the interfacial numbers of amino acids can be used to produce models with consistently good performance across different data sets, indicating the importance of the identities of interfacial amino acids in underlying BA. When trained on a diverse set of complexes from two benchmark data sets, the best performing BA model was generated with an explicit linear equation involving six amino acids. Tyrosine, in particular, was identified as the key amino acid in controlling BA, as it had the strongest correlation with BA and was consistently identified as the most important amino acid in feature importance studies. Glycine and serine were identified as the next two most important amino acids in predicting BA. The results from this study further our understanding of PPIs and can be used to make improved predictions of BA, giving them implications for drug design and screening in the pharmaceutical industry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10809705PMC
http://dx.doi.org/10.1021/acsomega.3c06996DOI Listing

Publication Analysis

Top Keywords

amino acids
32
acids protein-protein
12
specific amino
12
amino
10
interfacial contacts
8
acids
8
protein-protein binding
8
binding affinity
8
protein-protein interface
8
data sets
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!