Colloidosomes are microcapsules whose shells are composed of cumulated or fused colloidal particles. When colloidosomes are used for in situ encapsulation, it is still a challenge to achieve a high encapsulation efficiency and controllable release by an effective fabrication method. Herein, we present a highly efficient route for the large-scale preparation of colloidosomes. The biodegradable polylactic acid (PLA) nanoparticles (NPs) as shell materials can be synthesized using an antisolvent precipitation method, and the possible formation mechanism was given through the molecular dynamics (MD) simulation. The theoretical values are basically consistent with the experimental results. Through the use of the modified and unmodified PLA NPs, the colloidosomes with controllable shell porosities can be easily constructed using spray drying technology. We also investigate the mechanism of colloidosomes successfully self-assembled by PLA NPs with various factors of inlet temperature, feed rate, and flow rates of compressed air. Furthermore, avermectin (AVM) was used as a model for in situ encapsulation and a controllable release. The spherical modified colloidosomes encapsulating AVM not only achieve a small mean diameter of 1.57 μm but also realize a high encapsulation efficiency of 89.7% and impermeability, which can be further verified by the MD simulation. AVM molecules gather around and clog the shell pores during the evaporation of water molecules. More importantly, the PLA colloidosomes also reveal excellent UV-shielding properties, which can protect AVM from photodegradation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10809374 | PMC |
http://dx.doi.org/10.1021/acsomega.3c07802 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!