Role of GO and Photoinitiator Concentration on Curing Behavior of PEG-Based Polymer for DLP 3D Printing.

ACS Omega

Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.

Published: January 2024

Photocuring kinetics in photopolymerization-based three-dimensional (3D) printing processes have gained significant attention because they determine the final dimension accuracy of the printed structures. In this study, the curing kinetics of liquid-light-curable resins, including water-dispersed graphene oxide (GO) and ultraviolet (UV)-cured acrylic resins, were investigated during digital light processing (DLP) 3D printing. Various stable composites of water-dispersed GO and UV-cured acrylic resin were prepared to fabricate 3D structures for cure-depth measurements. Several factors, including the UV-exposure conditions, photoinitiator concentration, and composition of the photopolymer resin, were found to significantly affect the cure-depth characteristics of the printed structures. The photocuring depth of the polymeric resin system was investigated as a function of the photoinitiator concentration. In addition, the study showed that the introduction of GO played a significant role in controlling the performance of the highly cross-linked network and the thickness of the cured layer. The curing characteristics of functional photocurable polymer-based DLP 3D printing contribute to process development and improvement of the quality of printed microstructures for industrial applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10809677PMC
http://dx.doi.org/10.1021/acsomega.3c05378DOI Listing

Publication Analysis

Top Keywords

photoinitiator concentration
12
dlp printing
12
printed structures
8
uv-cured acrylic
8
role photoinitiator
4
concentration curing
4
curing behavior
4
behavior peg-based
4
peg-based polymer
4
polymer dlp
4

Similar Publications

Dually Fluorinated Unimolecular Micelles for Stable Oxygen-Carrying and Enhanced Photosensitive Efficiency to Boost Photodynamic Therapy against Hypoxic Tumors.

Acta Biomater

January 2025

State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Deign and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China. Electronic address:

Tumor hypoxia is one of key challenges in deep tumor photodynamic therapy (PDT), and how to fix this issue is attracting ongoing concerns worldwide. This work demonstrates dually fluorinated unimolecular micelles with desirable and stable oxygen-carrying capacity, high cellular penetration, and integrative type I & II PDT for deep hypoxic tumors. Dually fluorinated star copolymers with fluorinated phthalocyanines as the core are prepared through photoinitiated electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization under irradiation with NIR LED light at room temperature, followed by assembly into unimolecular micelles.

View Article and Find Full Text PDF

FRESH extrusion 3D printing of type-1 collagen hydrogels photocrosslinked using ruthenium.

PLoS One

January 2025

The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America.

The extrusion bioprinting of collagen material has many applications relevant to tissue engineering and regenerative medicine. Freeform Reversible Embedding of Suspended Hydrogels (FRESH) technology is capable of 3D printing collagen material with the specifications and details needed for precise tissue guidance, a crucial requirement for effective tissue repair. While FRESH has shown repeated success and reliability for extrusion printing, the mechanical properties of completed collagen prints can be improved further by post-print crosslinking methodologies.

View Article and Find Full Text PDF

Photocrosslinkable formulations based on the radical thiol-ene reaction are considered better alternatives than methacrylated counterparts for light-based fabrication processes. This study quantifies differences between thiol-ene and methacrylated crosslinked hydrogels in terms of precursors stability, the control of the crosslinking process, and the resolution of printed features particularized for hyaluronic acid (HA) inks at concentrations relevant for bioprinting. First, the synthesis of HA functionalized with norbornene, allyl ether, or methacrylate groups with the same molecular weight and comparable degrees of functionalization is presented.

View Article and Find Full Text PDF

Currently, there are only few reports on water-soluble photoinitiating systems. In this study, a highly water-soluble organic dye i.e.

View Article and Find Full Text PDF

Investigation of Silver- and Plant Extract-Infused Polymer Systems: Antioxidant Properties and Kinetic Release.

Int J Mol Sci

November 2024

Department of Material Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 31-864 Kraków, Poland.

This study evaluated the impact of silver particles, suspended in flower extract, on the physicochemical characteristics and release dynamics of antioxidant compounds in PVP (polyvinylpyrrolidone)-based hydrogel systems. The hydrogels were synthesized via photopolymerization with fixed amounts of crosslinker (PEGDA) and photoinitiator, while the concentration of the silver-infused extract was systematically varied. Key properties, including the density, porosity, surface roughness, swelling capacity, and water vapor transmission rate (WVTR), were quantitatively analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!