Maturation and culture affect the metabolomic profile of oocytes and follicular cells in young and old mares.

Front Cell Dev Biol

Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States.

Published: January 2024

Oocytes and follicular somatic cells within the ovarian follicle are altered during maturation and after exposure to culture . In the present study, we used a nontargeted metabolomics approach to assess changes in oocytes, cumulus cells, and granulosa cells from dominant, follicular-phase follicles in young and old mares. Samples were collected at three stages associated with oocyte maturation: (1) GV, germinal vesicle stage, prior to the induction of follicle/oocyte maturation ; (2) MI, metaphase I, maturing, collected 24 h after induction of maturation ; and (3) MIIC, metaphase II, mature with collection 24 h after induction of maturation plus 18 h of culture . Samples were analyzed using gas and liquid chromatography coupled to mass spectrometry only when all three stages of a specific cell type were obtained from the same mare. Significant differences in metabolite abundance were most often associated with MIIC, with some of the differences appearing to be linked to the final stage of maturation and others to exposure to culture medium. While differences occurred for many metabolite groups, some of the most notable were detected for energy and lipid metabolism and amino acid abundance. The study demonstrated that metabolomics has potential to aid in optimizing culture methods and evaluating cell culture additives to support differences in COCs associated with maternal factors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10811030PMC
http://dx.doi.org/10.3389/fcell.2023.1280998DOI Listing

Publication Analysis

Top Keywords

maturation culture
8
oocytes follicular
8
young mares
8
maturation exposure
8
exposure culture
8
three stages
8
induction maturation
8
maturation
7
culture
5
culture affect
4

Similar Publications

Human keratinocytes grown at a gas-permeable interface in vitro stratify correctly to generate engineered human epidermis.

Cytotherapy

December 2024

School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand. Electronic address:

Background: One of the key functions of human skin is to provide a barrier, protecting the body from the surrounding environment and maintaining homeostasis of the internal environment. A mature, stratified epidermis is critical to achieve skin barrier function and is particularly important when producing skin grafts in vitro for wound treatment. For decades epidermal stratification has been achieved in vitro by culturing keratinocytes at an air-liquid interface, triggering proliferating basal keratinocytes to differentiate and form all epidermal layers.

View Article and Find Full Text PDF

Generation of upscaled quantities of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM), for therapeutic or testing applications, is both expensive and time-consuming. Herein, a scalable bioprocess for hiPSC-CM expansion in stirred-tank bioreactors (STB) is developed. By combining the continuous activation of the Wnt pathway, through perfusion of CHIR99021, within a mild hypoxia environment, the expansion of hiPSC-CM as aggregates is maximized, reaching 4 billion of pure hiPSC-CM in 2L STB.

View Article and Find Full Text PDF

Background: Organs and tissues need to be vascularized during development. Similarly, vascularization is required to engineer thick tissues. How vessels are formed during organogenesis is not fully understood, and vascularization of engineered tissues remains a significant challenge.

View Article and Find Full Text PDF

Normative and limit values of speed, endurance and power tests results of young football players.

Front Physiol

January 2025

Faculty of Physical Culture Sciences, Collegium Medicum im. dr. Władysława Biegańskiego, Jan Długosz University in Częstochowa, Częstochowa, Poland.

Introduction: This study aimed to assess the development of speed, endurance and power in young football players and to create percentile charts and tables for standardized assessment.

Methods: Cross-sectional data were collected from 495 male players aged 12-16 years at RKS Raków Częstochowa Academy in 2018-2022. Players participated in a systematic training in which running time 5 m, 10 m, 30 m, lower limb power (standing long jump), and Maximum Aerobic Speed (MAS) were measured using the 30-15 Intermittent Fitness Test.

View Article and Find Full Text PDF

Type IV collagen expression is regulated by Notch3-mediated Notch signaling during angiogenesis.

Biochem Biophys Res Commun

January 2025

Graduate School of Engineering, Kogakuin University, Tokyo, Japan; Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan. Electronic address:

Angiogenesis, the process of new blood vessel formation, involves endothelial cell proliferation and migration, accompanied by the remodeling of the extracellular matrix (ECM). Type IV collagen, a major ECM component, plays a critical role in vascular basement membrane regeneration, influencing cell polarity, migration, and survival. This study examines the regulatory role of Notch signaling, mediated by Notch3, in type IV collagen expression using TIG-1 fibroblasts and a co-culture angiogenesis model with human umbilical vein endothelial cells (HUVECs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!