Soft polymer nanocapsules and microgels, which can adapt their shape and, at the same time, sequester and release molecular payloads in response to an external trigger, are a challenging complement to vesicular structures like polymersomes. In this work, we report the synthesis of such capsules by photo-cross-linking of coumarin-substituted polyglycidyl ethers, which we prepared by Williamson etherification of epichlorohydrin (ECH) repeating units with 7-hydroxycoumarin in copolymers with -butyl glycidyl ether (BGE). To control capsule size, we employed the prepolymers in an o/w miniemulsion, where they formed a gel layer at the interface upon irradiation at 365 nm by [2π + 2π] photodimerization of the coumarin groups. Upon irradiation at 254 nm, the reaction could be reversed and the gel wall could be repeatedly disintegrated and rebuilt. We further demonstrated (i) reversible hydrophilization of the gels by hydrolysis of the lactone rings in coumarin dimers as a mechanism to manipulate the permeability of the capsules and (ii) binding functional molecules as amides. Thus, the presented nanogels are remarkably versatile and can be further used as a carrier system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10810002 | PMC |
http://dx.doi.org/10.1021/acs.macromol.3c01698 | DOI Listing |
J Am Chem Soc
January 2025
Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
Polymer nanoparticles with low curvature, especially two-dimensional (2D) soft materials, are rich in functions and outstanding properties and have received extensive attention. Crystallization-driven self-assembly (CDSA) of linear semicrystalline block copolymers is currently a common method of constructing 2D platelets of uniform size. Although accompanied by high controllability, this CDSA method usually and inevitably requires a longer aging time and lower assembly concentration, limiting the large-scale preparation of nanoaggregates.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
This study presents a novel approach to control "linked property changes" in hydrogels. Specifically, we controlled the swelling behaviour without altering the bulk elastic modulus by grafting polymers selectively into the surface region of the gels, while varying the graft amount.
View Article and Find Full Text PDFNano Lett
January 2025
School of Physics and Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China.
The structural properties of packed soft-core particles provide a platform to understand the cross-pollinated physical concepts in solid-state and soft-matter physics. Confined on a spherical surface, the traditional differential geometry also dictates the overall defect properties in otherwise regular crystal lattices. Using molecular dynamics simulation of the Hertzian model as a tool, we report here the emergence of new types of disclination patterns: domain and counter-domain defects, when hexagonal and square patterns coexist.
View Article and Find Full Text PDFMater Horiz
January 2025
College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
Hydrogels are promising materials for wearable electronics, artificial skins and biomedical engineering, but their limited stretchability, self-recovery and crack resistance restrict their performance in demanding applications. Despite efforts to enhance these properties using micelle cross-links, nanofillers and dynamic interactions, it remains a challenge to fabricate hydrogels that combine high stretchability, self-healing and strong adhesion. Herein, we report a novel hydrogel synthesized the copolymerization of acrylamide (AM), maleic acid (MA) and acrylonitrile (AN), designed to address these limitations.
View Article and Find Full Text PDFNat Commun
January 2025
Robotics Institute and State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China.
Hydrogel-based soft machines are promising in diverse applications, such as biomedical electronics and soft robotics. However, current fabrication techniques generally struggle to construct multimaterial three-dimensional hydrogel architectures for soft machines and robots, owing to the inherent hydrogel softness from the low-density polymer network nature. Herein, we present a multimaterial cryogenic printing (MCP) technique that can fabricate sophisticated soft hydrogel machines with accurate yet complex architectures and robust multimaterial interfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!