Introduction: Concerns are growing in the aviation industry about occupational skin diseases like malignant melanoma (MM) among airline pilots (APs), due to the unique working environment that exposes them to various skin stressors.
Aim: To compare five skin biophysical parameters in a group of 40 male APs, each matched in terms of age and service tenure (minimum of 5 years) with a control group of 40 male office workers (OWs). Considering the potential role of dermokine (DMKN) in skin barrier dysfunction and the pathogenesis of MM, we further analyzed the serum levels of this molecule and correlated them with the measured skin parameters.
Material And Methods: Stratum corneum skin hydration, transepidermal water loss (TEWL), sebum content, erythema index (EI), and melanin index (MI) were quantified by non-invasive instruments in the cheek region. Serum DMKN levels were measured using a commercially available enzyme-linked immunosorbent assay kit.
Results: Compared with OWs, the skin of APs exhibited a decrease in hydration levels in the stratum corneum, coinciding with a higher TEWL. However, there was no significant variance in sebum content between the groups. MI was notably higher in APs than in OWs, as was EI. In APs, serum DMKN levels were independently associated with MI (β = 0.56, < 0.05).
Conclusions: We found a significant link between the profession of an airline pilot and changes in skin biophysical parameters. Further research into the interplay between serum DMKN levels and the risk of MM in APs is warranted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10809828 | PMC |
http://dx.doi.org/10.5114/ada.2023.132262 | DOI Listing |
J Biol Chem
December 2024
Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA. Electronic address:
Microtubule (MT) function plasticity originates from its composition of α- and β-tubulin isotypes and the post-translational modifications of both subunits. Aspects such as MT assembly dynamics, structure, and anticancer drug binding can be modulated by αβ-tubulin heterogeneity. However, the exact molecular mechanism regulating these aspects is only partially understood.
View Article and Find Full Text PDFInt J Dermatol
December 2024
HCEMM-SU Translational Dermatology Research Group, Semmelweis University, Budapest, Hungary.
Background: The utilization of PD1 and CTLA4 inhibitors has revolutionized the treatment of malignant melanoma (MM). However, resistance to targeted and immune-checkpoint-based therapies still poses a significant problem.
Objective: Here, we mine large-scale MM proteogenomic data to identify druggable targets and forecast treatment efficacy and resistance.
Nano Lett
December 2024
School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
Excessive reactive oxygen species (ROS) generated by ultraviolet (UV) irradiation significantly contribute to photoaging by increasing the level of matrix metalloproteinases (MMPs), accelerating collagen degradation. Commercial dermal fillers offer temporary wrinkle reduction via volume enhancement. In this study, we propose tilapia-derived collagen hydrogels embedded with ceria nanoparticles (Ce@Col gels) as long-lasting dermal fillers for UVB-induced photoaging.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.
Human cathelicidin LL-37 offers significant benefits to the immune system and in treating various diseases, but its therapeutic potential is hindered by low activity and instability in physiological environments. Here, we introduce a strategy to boost LL-37 levels in exosomes derived from THP-1 monocytes by incubating cells with electrospun nanofibers containing immunomodulators (e.g.
View Article and Find Full Text PDFCell Death Discov
December 2024
Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.
The ASPP (apoptosis-stimulating protein of p53) family of proteins is involved in many cellular interactions and is starting to emerge as a major scaffolding hub for numerous proteins involved in cancer biology, inflammation and cellular integrity. It consists of the three members ASPP1, ASPP2 and iASPP which are best known for modulating the apoptotic function of p53, thereby directing cell fate decision. Germline mutations in iASPP have been shown to cause cardiocutaneous syndromes, a combination of heart and skin defects usually leading to death before the age of five.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!