A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Water deprivation-induced hypoxia and oxidative stress physiology responses in respiratory organs of the Indian stinging fish in near coastal zones. | LitMetric

Background: Water deprivation-induced hypoxia stress (WDIHS) has been extensively investigated in numerous fish species due to their adaptation with accessory respiratory organs to respire air but this has not been studied in Indian stinging fish . Data regarding WDIHS-induced metabolism in accessory respiratory organ (ARO) and gills and its relationship with oxidative stress (OS) in respiratory organs of air-breathing fish , are limited. So, this study aimed to investigate the effects of WDIHS (0, 3, 6, 12, and 18 h) on hydrogen peroxide (HO) as reactive oxygen species (ROS), OS, redox regulatory enzymes, and electron transport enzymes (ETC) in ARO and gills of .

Methods: Fish were exposed to air for different hours (up to 18 h) against an appropriate control, and ARO and gills were sampled. The levels of oxygen saturation in the body of the fish were assessed at various intervals during exposure to air. Protein carbonylation (PC) and thiobarbituric acid reactive substances (TBARS) were used as OS markers, HO as ROS marker, and various enzymatic activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), along with the assessment of complex enzymes (I, II, III, and V) as well as the levels of ascorbic acid (AA) and the reduced glutathione (GSH) were quantified in both the tissues.

Results: Discriminant function analyses indicate a clear separation of the variables as a function of the studied parameters. The gills exhibited higher levels of GSH and HO compared to ARO, while ARO showed elevated levels of PC, TBARS, AA, SOD, CAT, and GPx activities compared to the gills. The activities of GR and ETC enzymes exhibited similar levels in both the respiratory organs, namely the gills, and ARO. These organs experienced OS due to increased HO, TBARS, and PC levels, as observed during WDIHS. Under WDIHS conditions, the activity/level of CAT, GPx, GR, and GSH decreased in ARO, while SOD activity, along with GR, GSH, and AA levels decreased in gills. However, the activity/level of SOD and AA in ARO and CAT in gills was elevated under WDIHS. Complex II exhibited a positive correlation with WDIHS, while the other ETC enzymes (complex I, III, and V) activities had negative correlations with the WDIHS.

Discussion: The finding suggests that ARO is more susceptible to OS than gills under WDIHS. Despite both organs employ distinct redox regulatory systems to counteract this stress, their effectiveness is hampered by the inadequacy of small redox regulatory molecules and the compromised activity of the ETC, impeding their ability to effectively alleviate the stress induced by the water-deprivation condition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10822137PMC
http://dx.doi.org/10.7717/peerj.16793DOI Listing

Publication Analysis

Top Keywords

respiratory organs
16
aro gills
12
redox regulatory
12
aro
9
gills
9
water deprivation-induced
8
deprivation-induced hypoxia
8
oxidative stress
8
indian stinging
8
stinging fish
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!