Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5137/1019-5149.JTN.44315-23.2 | DOI Listing |
Eur J Neurosci
January 2025
Laboratory of Human Cell Neurophysiology, N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Moscow, Russia.
Excessive beta oscillations in the subthalamic nucleus are established as a primary electrophysiological biomarker for motor impairment in Parkinson's disease and are currently used as feedback signals in adaptive deep brain stimulation systems. However, there is still a need for optimization of stimulation parameters and the identification of optimal biomarkers that can accommodate varying patient conditions, such as ON and OFF levodopa medication. The precise boundaries of 'pathological' oscillatory ranges, associated with different aspects of motor impairment, are still not fully clarified.
View Article and Find Full Text PDFBrain Stimul
January 2025
Center for Mind/Brain Sciences (CIMeC), University of Trento, 38068, Rovereto, Italy. Electronic address:
J Neurol
January 2025
Department of Neurology and Institute of Neurology, Ruijin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
Background: Bilateral deep brain stimulation (DBS) of subthalamic nucleus (STN) has demonstrated efficacy for ameliorating medication-refractory isolated dystonia. Nonetheless, the paucity of evidence regarding its long-term impact on quality-of-life (QoL) necessitates further investigation.
Objectives: This study aimed to elucidate the longitudinal effects of chronic STN stimulation on QoL in patients suffering from isolated dystonia.
Proc Natl Acad Sci U S A
January 2025
Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115.
Deep brain stimulation is an efficacious treatment for dystonia. While the internal pallidum serves as the primary target, recently, stimulation of the subthalamic nucleus (STN) has been investigated. However, optimal targeting within this structure and its surroundings have not been studied in depth.
View Article and Find Full Text PDFUnlabelled: The basal ganglia play a crucial role in action selection by facilitating desired movements and suppressing unwanted ones. The substantia nigra pars reticulata (SNr), a key output nucleus, facilitates movement through disinhibition of the superior colliculus (SC). However, its role in action suppression, particularly in primates, remains less clear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!