Download full-text PDF

Source
http://dx.doi.org/10.5137/1019-5149.JTN.44315-23.2DOI Listing

Publication Analysis

Top Keywords

subthalamic nucleus
4
nucleus deep
4
deep brain
4
brain stimulation
4
stimulation efficacious
4
efficacious treating
4
treating axial
4
axial symptoms
4
symptoms patients
4
patients suboptimal
4

Similar Publications

Excessive beta oscillations in the subthalamic nucleus are established as a primary electrophysiological biomarker for motor impairment in Parkinson's disease and are currently used as feedback signals in adaptive deep brain stimulation systems. However, there is still a need for optimization of stimulation parameters and the identification of optimal biomarkers that can accommodate varying patient conditions, such as ON and OFF levodopa medication. The precise boundaries of 'pathological' oscillatory ranges, associated with different aspects of motor impairment, are still not fully clarified.

View Article and Find Full Text PDF

Background: Bilateral deep brain stimulation (DBS) of subthalamic nucleus (STN) has demonstrated efficacy for ameliorating medication-refractory isolated dystonia. Nonetheless, the paucity of evidence regarding its long-term impact on quality-of-life (QoL) necessitates further investigation.

Objectives: This study aimed to elucidate the longitudinal effects of chronic STN stimulation on QoL in patients suffering from isolated dystonia.

View Article and Find Full Text PDF

Engaging dystonia networks with subthalamic stimulation.

Proc Natl Acad Sci U S A

January 2025

Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115.

Deep brain stimulation is an efficacious treatment for dystonia. While the internal pallidum serves as the primary target, recently, stimulation of the subthalamic nucleus (STN) has been investigated. However, optimal targeting within this structure and its surroundings have not been studied in depth.

View Article and Find Full Text PDF

Unlabelled: The basal ganglia play a crucial role in action selection by facilitating desired movements and suppressing unwanted ones. The substantia nigra pars reticulata (SNr), a key output nucleus, facilitates movement through disinhibition of the superior colliculus (SC). However, its role in action suppression, particularly in primates, remains less clear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!