Molecules that violate Hund's rule and possess negative singlet-triplet gaps (Δ) have been actively studied for their potential usage in organic light emitting diodes without the need for thermal activation. However, the weak oscillator strength from the symmetry of such molecules has been recognized as their shortcoming for their application in optoelectronic devices. A group of molecules with a common structural motif involving the original molecule with an inverted gap having branches consisting of conjugated molecules of varied structures and extent of conjugation have been predicted to have desirable oscillator strength, but only few detailed and comprehensive studies regarding the form of excited states and the reason behind the improved oscillator strength have been carried out. We show in this work a series of analyses that suggest that the increase of oscillator strength is correlated with the nature of the excited state changing from a localized excitation to a delocalized excitation involving the central molecule and the branches. The resulting oscillator strength thus depends on the energetic matching of the branching molecule and the central molecule, rather than solely the oscillator strength of the central molecule. From the Δ inversion point of view, the static correlation with low-lying doubly excited configurations, the key mechanism behind the inversion in the localized excited state, weakens as the excited states delocalize. As a consequence, the dynamic correlation has a more decisive effect in determining the singlet-triplet gap.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp05580aDOI Listing

Publication Analysis

Top Keywords

oscillator strength
28
central molecule
12
singlet-triplet gap
8
excited states
8
excited state
8
oscillator
7
strength
7
molecule
5
excited
5
extension molecules
4

Similar Publications

Synaptic plasticity plays a fundamental role in neuronal dynamics, governing how connections between neurons evolve in response to experience. In this study, we extend a network model of θ-neuron oscillators to include a realistic form of adaptive plasticity. In place of the less tractable spike-timing-dependent plasticity, we employ recently validated phase-difference-dependent plasticity rules, which adjust coupling strengths based on the relative phases of θ-neuron oscillators.

View Article and Find Full Text PDF

Multiresonant fluorophores are a novel class of organic luminophores with a narrow emission spectrum. They can yield organic light-emitting devices, e.g.

View Article and Find Full Text PDF

Green approach to synthesis polymer composites based on chitosan with desired linear and non-linear optical characteristics.

Sci Rep

January 2025

Turning Trash to Treasure Laboratory (TTTL), Research and Development Center, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaymaniyah, 46001, Iraq.

The current study used sustainable and green approaches to convey polymer composites with desired optical properties. The extracted green tea dye (GTD) enriched with ligands was used to synthesize zinc metal complexes. Green chitosan biopolymer incorporated with green synthesized metal complex using casting technique was used to deliver polymer composites with improved optical properties.

View Article and Find Full Text PDF

Given their molecular properties and electronic structure, graphyne and graphdiyne are promising materials with numerous applications in different fields of material science. Dehydrobenzoannules (DBAs) are candidates that can serve as building blocks for synthesizing and designing new 2D carbon allotropes; however, only a few graphynes have been produced on a practical scale. Herein, we present our investigation of three DBAs, which serve as a model to understand the relationship between the structure and property, contributing to 2D carbon allotropes' rational design and synthetic effort.

View Article and Find Full Text PDF

Observing quantum mechanical characteristics in biological processes is a surprising and important discovery. One example, which is gaining more experimental evidence and practical applications, is the effect of weak magnetic fields with extremely low frequencies on cells, especially cancerous ones. In this study, we use a mathematical model of ROS dynamics in cancer cells to show how ROS oscillatory patterns can act as a resonator to amplify the small effects of the magnetic fields on the radical pair dynamics in mitochondrial Complex III.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!