Hydrogen production by direct seawater electrolysis is an alternative technology to conventional freshwater electrolysis, mainly owing to the vast abundance of seawater reserves on earth. However, the lack of robust, active, and selective electrocatalysts that can withstand the harsh and corrosive saline conditions of seawater greatly hinders its industrial viability. Herein, a series of amorphous transition-metal phospho-borides, namely Co-P-B, Ni-P-B, and Fe-P-B are prepared by simple chemical reduction method and screened for overall alkaline seawater electrolysis. Co-P-B is found to be the best of the lot, requiring low overpotentials of ≈270 mV for hydrogen evolution reaction (HER), ≈410 mV for oxygen evolution reaction (OER), and an overall voltage of 2.50 V to reach a current density of 2 A cm in highly alkaline natural seawater. Furthermore, the optimized electrocatalyst shows formidable stability after 10,000 cycles and 30 h of chronoamperometric measurements in alkaline natural seawater without any chlorine evolution, even at higher current densities. A detailed understanding of not only HER and OER but also chlorine evolution reaction (ClER) on the Co-P-B surface is obtained by computational analysis, which also sheds light on the selectivity and stability of the catalyst at high current densities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202301395 | DOI Listing |
J Am Chem Soc
January 2025
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
The trade-off between the performances of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) presents a challenge in designing high-performance aqueous rechargeable zinc-air batteries (a-r-ZABs) due to sluggish kinetics and differing reaction requirements. Accurate control of the atomic and electronic structures is crucial for the rational design of efficient bifunctional oxygen electrocatalysts. Herein, we designed a Sn-Co/RuO trimetallic oxide utilizing dual-active sites and tin (Sn) regulation strategy by dispersing Co (for ORR) and auxiliary Sn into the near-surface and surface of RuO (for OER) to enhance both ORR and OER performances.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics, Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany.
Solid additives have garnered significant attention due to their numerous advantages over liquid additives. This study explores the potential of the green-fluorescent conjugated polymer denoted Atums Green as a solid additive in green-solvent-based PBDB-TF-T1:BTP-4F-12 solar cells. Even tiny amounts of Atums Green doping significantly improve the device performance.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Geography, University College London, London, England, United Kingdom.
Evaluating the dynamic co-evolution and feedback mechanisms within socio-ecological systems is crucial for determining the resilience and sustainability of environmental governance strategies. The grass-livestock system, as a complex entity encompassing livestock nutrition, foraging behavior, vegetation ecology, pastoralists' economic income, and policy interventions, indicates that any change in a single element may trigger a chain reaction within the system. This paper uses a system dynamics approach to construct a simulation model of the grass-livestock system in alpine pastoral areas, simulating the long-term dynamic co-evolution of the socio-ecological system in the Qilian Mountains region of China.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
Nanoscale
January 2025
Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, 401331, PR China.
The development of environmentally friendly, high-efficiency, stable, earth-abundant and non-precious metal-based electrocatalysts with fast kinetics and low overpotential for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is of exceeding significance but still challenging. Herein, a bifunctional electrode of unique hierarchical NiFe-LDH/Ni/NiCoS/NF (NiFe-LDH = nickel-iron layered double hydroxide and NF = nickel foam) electrocatalytic architecture, which is built up from NiFe-LDH nanosheets, Ni nanoparticles and NiCoS nanoneedles sequentially arrayed on a porous NF substrate, has been prepared by a facile hydrothermal and electrodeposition method. This electrocatalytic architecture is binder-free and its outer NiFe-LDH nanosheets can effectively prevent the oxidation of inner Ni nanoparticles and corrosion of NiCoS nanoneedles during water electrolysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!