Enhancing NIR-II Upconversion Monochromatic Emission for Temperature Sensing.

Small

State Key Laboratory of Explosion Science and Technology, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China.

Published: July 2024

The upconversion luminescence (UCL) in the second near-infrared window (NIR-II) is highly attractive due to its excellent performance in high-resolution bioimaging, anticounterfeiting, and temperature sensing. However, upconvertion nanoparticles (UCNPs) are normally emitted in visible light, potentially impacting the imaging quality. Here, a monochromatic Er-rich (NaErF:x%Yb@NaYF) nanoparticles with excitation at 1532 nm and emission at 978 nm is proposed, both situated in the NIR-II region. The proper proportion of Yb ions doping has a positive effect on the NIR-II emission, by enhancing the cross relaxation efficiency and accelerating the energy transfer rate. Owing to the interaction between the Er and Yb is inhibited at low temperatures, the UCL emission intensities at visible and NIR-II regions show opposite trend with temperature changing, which establishes a fitting formula to derive temperature from the luminous intensity ratio, promoting the potential application of UCL in NIR-II regions for the temperature sensing.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202308748DOI Listing

Publication Analysis

Top Keywords

temperature sensing
12
nir-ii regions
8
temperature
5
nir-ii
5
enhancing nir-ii
4
nir-ii upconversion
4
upconversion monochromatic
4
emission
4
monochromatic emission
4
emission temperature
4

Similar Publications

Light-induced electron spin qubit coherences in the purple bacteria reaction center protein.

Phys Chem Chem Phys

January 2025

Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, USA.

Photosynthetic reaction center proteins (RCs) provide ideal model systems for studying quantum entanglement between multiple spins, a quantum mechanical phenomenon wherein the properties of the entangled particles become inherently correlated. Following light-generated sequential electron transfer, RCs generate spin-correlated radical pairs (SCRPs), also referred to as entangled spin qubit (radical) pairs (SQPs). Understanding and controlling coherence mechanisms in SCRP/SQPs is important for realizing practical uses of electron spin qubits in quantum sensing applications.

View Article and Find Full Text PDF

Multispecies coral reef fisheries are typically managed by local communities who often lack research and monitoring capacity, which prevents estimation of well-defined sustainable reference points to perform locally relevant fishery assessments. Recent research modeling coral reef fisheries globally has estimated multispecies sustainable reference points (i.e.

View Article and Find Full Text PDF

An ultrasensitive refractive index (RI) sensing technology based on an enhanced Vernier effect is proposed, which integrates a polymer Fabry-Perot interferometer (FPI) with an open cavity FPI on the tip of a seven-core optical fiber. Interference spectra of the polymer FPI and the open cavity FPI shift to opposite directions as the ambient RI changes, thus leading to the enhanced Vernier effect. Investigations of RI sensitivity and temperature dependence of the proposed fiber sensors are carried out.

View Article and Find Full Text PDF

A novel, to the best of our knowledge, optical fiber whispering-gallery mode (WGM) sensor for simultaneously measuring humidity and temperature is proposed and investigated. The proposed sensor is realized by a polyvinyl alcohol (PVA)-coated capillary tube coupling with an optical single-mode fiber (SMF), which is integrated with a fiber Bragg grating (FBG). The as-fabricated sensor can be used not only for relative humidity (RH) sensing but also for temperature detection.

View Article and Find Full Text PDF

Wearable sensors with multiple functions are attracting significant attention due to their broad applications in health monitoring and human-computer interaction. Despite significant progress in wearable sensors, it is a significant challenge to monitor temperature and stress simultaneously with a single sensor. A wearable multifunctional optical sensor based on Er/Yb co-doped GdO nanoparticles and a tapered U-shaped fiber is proposed to monitor both temperature and stress in this paper.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!