Model-based reconstruction for looping-star MRI.

Magn Reson Med

Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.

Published: May 2024

Purpose: The aim of this study was to develop a reconstruction method that more fully models the signals and reconstructs gradient echo (GRE) images without sacrificing the signal to noise ratio and spatial resolution, compared to conventional gridding and model-based image reconstruction method.

Methods: By modeling the trajectories for every spoke and simplifying the scenario to only echo-in and echo-out mixture, the approach explicitly models the overlapping echoes. After modeling the overlapping echoes with two system matrices, we use the conjugate gradient algorithm (CG-SENSE) with the nonuniform FFT (NUFFT) to optimize the image reconstruction cost function.

Results: The proposed method is demonstrated in phantoms and in-vivo volunteer experiments for three-dimensional, high-resolution T2*-weighted imaging and functional MRI tasks. Compared to the gridding method, the high resolution protocol exhibits improved spatial resolution and reduced signal loss as a result of less intra-voxel dephasing. The fMRI task shows that the proposed model-based method produced images with reduced artifacts and blurring as well as more stable and prominent time courses.

Conclusion: The proposed model-based reconstruction results shows improved spatial resolution and reduced artifacts. The fMRI task shows improved time series and activation map due to the reduced overlapping echoes and under-sampling artifacts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10950512PMC
http://dx.doi.org/10.1002/mrm.29927DOI Listing

Publication Analysis

Top Keywords

spatial resolution
12
overlapping echoes
12
model-based reconstruction
8
image reconstruction
8
improved spatial
8
resolution reduced
8
fmri task
8
proposed model-based
8
reduced artifacts
8
model-based
4

Similar Publications

The Gravity Recovery and Climate Experiment (GRACE) and its follow-on (GRACE-FO) missions have provided estimates of Terrestrial Water Storage Anomalies (TWSA) since 2002, enabling the monitoring of global hydrological changes. However, temporal gaps within these datasets and the lack of TWSA observations prior to 2002 limit our understanding of long-term freshwater variability. In this study, we develop GRAiCE, a set of four global monthly TWSA reconstructions from 1984 to 2021 at 0.

View Article and Find Full Text PDF

Functional magnetic resonance imaging (fMRI) has dramatically advanced non-invasive human brain mapping and decoding. Functional near-infrared spectroscopy (fNIRS) and high-density diffuse optical tomography (HD-DOT) non-invasively measure blood oxygen fluctuations related to brain activity, like fMRI, at the brain surface, using more-lightweight equipment that circumvents ergonomic and logistical limitations of fMRI. HD-DOT grids have smaller inter-optode spacing (~ 13 mm) than sparse fNIRS (~ 30 mm) and therefore provide higher image quality, with spatial resolution ~ 1/2 that of fMRI, when using the several source-detector distances (13-40 mm) afforded by the HD-DOT grid.

View Article and Find Full Text PDF

Magnetic Resonance Imaging is a cornerstone of medical diagnostics, providing high-quality soft tissue contrast through non-invasive methods. However, MRI technology faces critical limitations in imaging speed and resolution. Prolonged scan times not only increase patient discomfort but also contribute to motion artifacts, further compromising image quality.

View Article and Find Full Text PDF

The objective of this work was to explore the capabilities of a field emission gun scanning electron microscope (FEG-SEM) equipped with a transmission scanning electron detector (TSEM) and energy dispersive spectroscopy (EDS) to identify nanoscale chemical heterogeneities in a gas atomization reaction synthesis (GARS) steel sample. The results of this analysis were compared to the same study conducted with scanning transmission electron microscopy (STEM) with EDS mapping. TSEM-EDS was performed using the standard spectral analysis approach, i.

View Article and Find Full Text PDF

Assessing future snow cover changes is challenging because the high spatial resolution required is typically unavailable from climate models. This study, therefore, proposes an alternative approach to estimating snow changes by developing a super-spatial-resolution downscaling model of snow depth (SD) for Japan using a convolutional neural network (CNN)-based method, and by downscaling an ensemble of models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) dataset. After assessing the coherence of the observed reference SD dataset with independent observations, we leveraged it to train the CNN downscaling model; following its evaluation, we applied the trained model to CMIP6 climate simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!