Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Self-propulsion of droplets in a controlled and long path at a high-speed is crucial for organic synthesis, pathological diagnosis and programable lab-on-a-chip. To date, extensive efforts have been made to achieve droplet self-propulsion by asymmetric gradient, yet, existing structural, chemical, or charge density gradients can only last for a while (<50 mm). Here, this work designs a symmetrical waved alternating potential (WAP) on a superhydrophobic surface to charge or discharge the droplets during the transport process. By deeply studying the motion mechanisms for neutral droplets and charged droplets, the circularly on/discharged droplets achieve the infinite self-propulsion (>1000 mm) with an ultrahigh velocity of meters per second. In addition, after permutation and combination of two motion styles of the droplets, it can be competent for more interesting work, such as liquid diode and liquid logic gate. Being assembled into a microfluidic chip, the strategy would be applied in chemical synthesis, cell culture, and diagnostic kits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202311729 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!