We propose a low-loss compound structure consisting of a multiplexed rectangular dielectric grating and a waveguide layer, which can function as multi-band optical filters and sensors in TE and TM polarization by utilizing the resonant mode of the waveguide (WG) and the hybrid SP, respectively. By manipulating the parameters and subsequently constraining the local density of multi-resonant modes to several distinct resonant wavelengths, we propose a novel category of highly sensitive refractive index sensing platforms. Spectral shifts ranging from 110 to 131 nm/RIU with FOM of (22, 26.2)/RIU under TE polarization and 80 to 114 nm/RIU with FOM of (5.7, 8.1)/RIU under TM polarization can be accurately discerned for multiple individual analytes across a broad spectral range. The proposed structures offer enhanced flexibility in the design of structures across a wide spectral range, catering to various potential applications in multi-band optical filters, sensors, and photodetectors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10822870 | PMC |
http://dx.doi.org/10.1038/s41598-024-52805-x | DOI Listing |
Nat Commun
January 2025
Key Laboratory for Organic Electronics and Information Displays (KLOEID), Nanjing University of Posts and Telecommunications, Nanjing, China.
Artificial simulated communication networks inspired by molecular communication in organisms use biological and chemical molecules as information carriers to realize information transmission. However, the design of programmable, multiplexed and general simulation models remains challenging. Here, we develop a DNA nanostructure recognition-based artificial molecular communication network (DR-AMCN), in which rectangular DNA origami nanostructures serve as nodes and their recognition as edges.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Zhangjiang Laboratory, Shanghai, 201204, China.
Boasting superior flexibility in beam manipulation and a simpler framework than traditional phased arrays, terahertz metasurface-based phased arrays show great promise for 5G-A/6G communication networks. Compared with the reflective reconfigurable intelligent surface (reflective RIS), the transmissive RIS (TRIS) offers more feasibility for transceiver multiplexing systems to meet the growing demand for high-performance beam tracking in terahertz communication and radar systems. However, the terahertz TRIS encounters greater challenges in phase shift, beam efficiency, and complex circuitry.
View Article and Find Full Text PDFRev Sci Instrum
December 2024
OFS Laboratories, 19 Schoolhouse Road, Somerset, New Jersey 08873, USA.
Transmission matrix measurements of multimode fibers are now routinely performed in numerous laboratories, enabling control of the electric field at the distal end of the fiber and paving the way for the potential application to ultrathin medical endoscopes with high resolution. The same concepts are applicable to other areas, such as space division multiplexing, targeted power delivery, fiber laser performance, and the general study of the mode coupling properties of the fiber. However, the process of building an experimental setup and developing the supporting code to measure the fiber's transmission matrix remains challenging and time consuming, with full details on experimental design, data collection, and supporting algorithms spread over multiple papers or lacking in detail.
View Article and Find Full Text PDFWe present a portable single-shot lens-free tomographic microscope, based on spatial multiplexing in-line digital holography, for three-dimensional (3D) imaging of dynamic specimens. The simplified system is realized by only a laser diodes array, a rectangular aperture, and a CMOS image sensor with a global shutter, which enables the recording of all the complex fields of a dynamic specimen from different illumination angles without any scanning mechanism by a multiplexing hologram, in a single camera exposure. Using our proposed data processing method, high-quality 3D tomograms, with a lateral resolution of 3.
View Article and Find Full Text PDFThe multi-channel perfect vortex (PV) array based on metasurface has important applications in optical communication, particle manipulation, quantum optics, and other fields due to its ultra-thin structure and excellent wavefront control ability. However, it is very challenging to utilize a single metasurface to simultaneously achieve independent channel PV arrays at different wavelengths with low crosstalk and low structural complexity. Here, we propose and design a single rectangular structured metasurface based on TiO, achieving a multi-channel PV beam array with dual-wavelength and dual-polarization multiplexing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!