Molecular determinants of ASIC1 modulation by divalent cations.

Sci Rep

Neuroscience Discovery, Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA.

Published: January 2024

Acid-sensing ion channels (ASICs) are proton-gated cation channels widely expressed in the nervous system. ASIC gating is modulated by divalent cations as well as small molecules; however, the molecular determinants of gating modulation by divalent cations are not well understood. Previously, we identified two small molecules that bind to ASIC1a at a novel site in the acidic pocket and modulate ASIC1 gating in a manner broadly resembling divalent cations, raising the possibility that these small molecules may help to illuminate the molecular determinants of gating modulation by divalent cations. Here, we examined how these two groups of modulators might interact as well as mutational effects on ASIC1a gating and its modulation by divalent cations. Our results indicate that binding of divalent cations to an acidic pocket site plays a key role in gating modulation of the channel.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10822848PMC
http://dx.doi.org/10.1038/s41598-024-52845-3DOI Listing

Publication Analysis

Top Keywords

divalent cations
28
modulation divalent
16
gating modulation
16
molecular determinants
12
small molecules
12
cations well
8
determinants gating
8
acidic pocket
8
divalent
7
cations
7

Similar Publications

Designing mimosine-containing peptides as efficient metal chelators: Insights from molecular dynamics and quantum calculations.

J Inorg Biochem

December 2024

Faculty of Chemistry (UPV/EHU), Manuel Lardizabal 3, Donostia-San Sebastian 20018, Spain; DIPC, Manuel Lardizabal 4, Donostia-San Sebastian 20018, Spain. Electronic address:

Mimosine, a non-essential amino acid derived from plants, has a strong affinity for binding divalent and trivalent metal cations, including Zn, Ni, Fe, and Al. This ability endows mimosine with significant antimicrobial and anti-cancer properties, making it a promising candidate for therapeutic applications. Previous research has demonstrated the effectiveness of mimosine-containing peptides as metal chelators, offering a safer alternative to conventional chelation agents.

View Article and Find Full Text PDF

Synthetic mordenite is widely used as a molecular sieve, adsorbent, and catalyst. To enhance these functionalities, it is crucial to understand the ion-exchange properties and cation-exchange sites of the zeolite. In this study, we analyzed the structural changes in fully Cs-, Sr-, Cd-, and Pb-exchanged mordenite by using synchrotron X-ray powder diffraction under ambient conditions.

View Article and Find Full Text PDF

Neuronal cell death induced by cell membrane damage is one of the major hallmarks of neurodegenerative diseases. Neuroinflammation precedes the loss of neurons; however, whether and how inflammation-related proteins contribute to the loss of membrane integrity remains unknown. We employed a range of biophysical tools, including high-speed atomic force microscopy, fluorescence spectroscopy, and electrochemical impedance spectroscopy, to ascertain whether the pro-inflammatory protein S100A8 induces alterations in biomimetic lipid membranes upon interaction.

View Article and Find Full Text PDF

Two platinide plumbides, EuPtPb and SrPtPb, were discovered using high-temperature exploratory synthesis and flux-assisted crystal growth. Their crystal structures were determined from single-crystal X-ray diffraction. Both compounds crystallize in the orthorhombic system; EuPtPb belongs to the YRhSn structure type (2, = 4.

View Article and Find Full Text PDF

Hydrophobic ion pairing: lipophilicity improvement of anionic macromolecules by divalent cation mediated complex formation.

Drug Deliv Transl Res

December 2024

Thiomatrix Forschungs- Und Beratungs GmbH, Trientlgasse 65, 6020, Innsbruck, Austria.

The aim of this study was to develop an alternative strategy to sufficiently increase the lipophilicity of anionic model macromolecules (MM) without the use of cationic counterions. Enoxaparin (ENO), insulin (INS) and poly-L-glutamic acid (PLG) were ion paired with anionic surfactants (sodium decanoate (DEC), sodium dodecyl sulfate (SDS), sodium stearate (SS) and sodium octadecyl sulfate (SOS)), mediated by divalent cations such as magnesium, calcium and zinc. Complexes were evaluated regarding their precipitation efficiency and logD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!