The hazardous plasma environment surrounding Earth poses risks to satellites due to internal charging and surface charging effects. Accurate predictions of these risks are crucial for minimizing damage and preparing for system failures of satellites. To forecast the plasma environment, it is essential to know the current state of the system, as the accuracy of the forecast depends on the accuracy of the initial condition of the forecast. In this study, we use data assimilation techniques to combine observational data and model predictions, and present the first global validation of a data-assimilative electron ring current nowcast during a geomagnetic storm. By assimilating measurements from one satellite and validating the results against another satellite in a different magnetic local time sector, we assess the global response and effectiveness of the data assimilation technique for space weather applications. Using this method, we found that the simulation accuracy can be drastically improved at times when observations are available while eliminating almost all of the bias previously present in the model. These findings contribute to the construction of improved operational models in estimating surface charging risks and providing realistic 'source' populations for radiation belt simulations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10822866PMC
http://dx.doi.org/10.1038/s41598-024-52187-0DOI Listing

Publication Analysis

Top Keywords

global validation
8
validation data-assimilative
8
data-assimilative electron
8
electron ring
8
ring current
8
current nowcast
8
space weather
8
weather applications
8
plasma environment
8
surface charging
8

Similar Publications

Background: Chronic kidney disease (CKD) imposes a significant global health and economic burden, impacting millions globally. Despite its high prevalence, public awareness and understanding of CKD remain limited, leading to delayed diagnosis and suboptimal management. Traditional patient education methods, such as 1-on-1 verbal instruction or printed brochures, are often insufficient, especially considering the shortage of nursing staff.

View Article and Find Full Text PDF

Background: Chronic hard-to-heal wounds, such as diabetic foot ulcers, venous leg ulcers, and pressure ulcers, present significant safety concerns, patient burdens, and challenges to health care systems globally.

Objective: To review the mechanism of action and clinical function of bromelain-based enzymatic debridement (BBD) in the context of wound care, focusing on the mechanism of action of BBD and its formulation for chronic wounds in particular.

Methods: A literature review was conducted to assess both bromelain's mechanism of action as well as clinical and preclinical studies on the use of BBD, searching the PubMed and Google Scholar databases for articles published between November 1992 and July 2024.

View Article and Find Full Text PDF

This study introduces a five-compartment model to account for the impacts of vaccination-induced recovery and nonlinear treatment rates in settings with limited hospital capacity. To reflect real-world scenarios, the model incorporates multiple reinfections in both vaccinated and recovered groups. It reveals a range of dynamics, including a disease-free equilibrium and up to six endemic equilibria.

View Article and Find Full Text PDF

This paper examines the circumstances under which a one-degree-of-freedom approximate system can be employed to predict the dynamics of a cantilever beam comprising an elastic element with a significant mass and a concentrated mass embedded at its end, impacting a moving rigid base. A reference model of the system was constructed using the finite element method, and an approximate lowest-order model was proposed that could be useful in engineering practice for rapidly ascertaining the dynamics of the system, particularly for predicting both periodic and chaotic motions. The number of finite elements in the reference model was determined based on the calculated values of natural frequencies, which were found to correspond to the values of natural frequencies derived from the application of analytical formulas.

View Article and Find Full Text PDF

A conserved fungal Knr4/Smi1 protein is crucial for maintaining cell wall stress tolerance and host plant pathogenesis.

PLoS Pathog

January 2025

Strategic Area: Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom.

Filamentous plant pathogenic fungi pose significant threats to global food security, particularly through diseases like Fusarium Head Blight (FHB) and Septoria Tritici Blotch (STB) which affects cereals. With mounting challenges in fungal control and increasing restrictions on fungicide use due to environmental concerns, there is an urgent need for innovative control strategies. Here, we present a comprehensive analysis of the stage-specific infection process of Fusarium graminearum in wheat spikes by generating a dual weighted gene co-expression network (WGCN).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!