Background: Isopropanol (IPA) is a commodity chemical used as a solvent or raw material for polymeric products, such as plastics. Currently, IPA production depends largely on high-CO-emission petrochemical methods that are not sustainable. Therefore, alternative low-CO emission methods are required. IPA bioproduction using biomass or waste gas is a promising method.

Results: Moorella thermoacetica, a thermophilic acetogenic microorganism, was genetically engineered to produce IPA. A metabolic pathway related to acetone reduction was selected, and acetone conversion to IPA was achieved via the heterologous expression of secondary alcohol dehydrogenase (sadh) in the thermophilic bacterium. sadh-expressing strains were combined with acetone-producing strains, to obtain an IPA-producing strain. The strain produced IPA as a major product using hexose and pentose sugars as substrates (81% mol-IPA/mol-sugar). Furthermore, IPA was produced from CO, whereas acetate was an abundant byproduct. Fermentation using syngas containing both CO and H resulted in higher IPA production at the specific rate of 0.03 h. The supply of reducing power for acetone conversion from the gaseous substrates was examined by supplementing acetone to the culture, and the continuous and rapid conversion of acetone to IPA showed a sufficient supply of NADPH for Sadh.

Conclusions: The successful engineering of M. thermoacetica resulted in high IPA production from sugars. M. thermoacetica metabolism showed a high capacity for acetone conversion to IPA in the gaseous substrates, indicating acetone production as the bottleneck in IPA production for further improving the strain. This study provides a platform for IPA production via the metabolic engineering of thermophilic acetogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10823632PMC
http://dx.doi.org/10.1186/s13068-024-02460-1DOI Listing

Publication Analysis

Top Keywords

ipa production
20
ipa
13
acetone conversion
12
moorella thermoacetica
8
conversion ipa
8
gaseous substrates
8
acetone
7
production
6
isopropanol production
4
thermophilic
4

Similar Publications

Background: Artificial intelligence (AI), a branch of computer science, has been of growing research interest since its introduction to healthcare disciplines in the 1970s. Research has demonstrated that the application of such technologies has allowed for greater task accuracy and efficiency in medical disciplines such as diagnostics, treatment protocols and clinical decision-making. Application in pharmacy practice is reportedly narrower in scope; with greater emphasis placed on stock management and day-to-day function optimisation than enhancing patient outcomes.

View Article and Find Full Text PDF

Background: Using dietary interventions to steer the metabolic output of the gut microbiota towards specific health-promoting metabolites is often challenging due to interpersonal variation in treatment responses.

Methods: In this study, we combined the ex vivo SIFR (Systemic Intestinal Fermentation Research) technology with untargeted metabolite profiling to investigate the impact of carrot-derived rhamnogalacturonan-I (cRG-I) on ex vivo metabolite production by the gut microbiota of 24 human adults.

Results: The findings reveal that at a dose equivalent to 1.

View Article and Find Full Text PDF

Background: In cancer care, the use of clinical practice guidelines (CPGs) has been shown to improve the quality and effectiveness of medical services. To facilitate physicians' adherence to these guidelines, Taiwan established the position of oncology case manager (OCM) in 2010, one of whose responsibilities is to monitor physicians' compliance. However, there have been few explorations of their experiences and the barriers they face in facilitating guideline implementation.

View Article and Find Full Text PDF

Proteomic analysis of effects of 1% atropine in myopia therapy in Guinea pigs.

Exp Eye Res

December 2024

Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai, China. Electronic address:

Myopia is a significant global public health issue. Key interventions for managing myopia include atropine treatment, optical correction, and surgical methods. This study focused on evaluating alterations in retinal protein expression after atropine therapy for myopia.

View Article and Find Full Text PDF

Aim: Voriconazole (VRZ) is highly effective in treating invasive pulmonary aspergillosis (IPA), in addition to hepatotoxicity. Therefore, the current study focuses on the development and characterization of voriconazole-loaded microspheres (VRZ@PCL MSPs) to augment pulmonary localization and antifungal efficacy.

Methods: VRZ@PCL MSPs were fabricated by using the o/w emulsion method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!