We lack a clear understanding of how anthropogenic pressures, exemplified by effluent discharge from wastewater treatment plants, destabilize microbial communities in the hyporheic zone (HZ) of receiving rivers. In this study, the spatiotemporal characteristics of hydrological parameters, and the physicochemical properties of surface and subsurface water in a representative effluent-dominated river were monitored. Sequencing of 16S rRNA amplicons and metagenomes revealed the microbial community structure in the HZ of both effluent discharge area and downstream region. The keystone taxa (taxa vital in determining the composition of each microbial cluster) and the keystone functions they controlled were subsequently identified. Effluent discharge amplified the depth of the oxic/suboxic zone and the hyporheic exchange fluxes in the effluent discharge area, which was 50-120% and 40-300% higher than in the downstream region, respectively. Microbial community structure pattern analysis demonstrated an enhancement in the rate of dispersal, an increase in microbial diversity, and an improved community network complexity in the effluent discharge area. By contrast, the number of keystone taxa in the effluent discharge area was 50-70% lower than that of the downstream region, resulting in reduced community network stability and functionality. The keystone taxa controlling metabolic functions in the networks categorized to effluent discharge area were comprised of more genera related to nitrogen and sulfur cycling, e.g., Dechloromonas, Desulfobacter, Flavobacterium, Nitrosomonas, etc., highlighting a research need in monitoring species associated with nutrient element cycling in the HZ of receiving waterbodies. The results showed that the keystone taxa could contribute positively to network stability, which was negatively correlated to hyporheic exchange fluxes and redox gradients. This study provides valuable insights that will improve our understanding of how river ecosystems respond to changes in anthropogenic pressures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2024.121190 | DOI Listing |
J Nephrol
January 2025
Nephrology Unit, V. Fazzi Hospital, Lecce, Italy.
Background: The KDIGO recommendation in acute kidney injury (AKI) patients requiring kidney replacement therapy is to deliver a Urea Kt/V of 1.3 for intermittent thrice weekly hemodialysis, and an effluent volume of 20-25 ml/kg/hour when using continuous renal replacement therapy (CRRT). Considering that prior studies have suggested equivalent outcomes when using CRRT-prolonged intermittent renal replacement therapy (PIRRT) effluent doses below 20 mL/kg/h, our group investigated the possible benefits of low effluent volume CRRT-PIRRT (12.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
Nitrate electroreduction is promising for achieving effluent waste-water treatment and ammonia production with respect to the global nitrogen balance. However, due to the impeded hydrogenation process, high overpotentials need to be surmounted during nitrate electroreduction, causing intensive energy consumption. Herein, a hydroxide regulation strategy is developed to optimize the interfacial HO behavior for accelerating the hydrogenation conversion of nitrate to ammonia at ultralow overpotentials.
View Article and Find Full Text PDFMar Environ Res
January 2025
School of Ocean Engineering and Technology, Sun Yat-sen University, (Guangzhou)/Southern Laboratory of Ocean Science and Engineering (Zhuhai), China; Institute of Estuarine and Coastal Research, Guangdong Provincial Engineering Research Center of Coasts, Islands and Reefs, Guangzhou, China.
The Pearl River Estuary (PRE) has experienced an influx of metals and nutrients, predominantly from the Pearl River, which has led to a potential threat to the estuarine ecosystem. In this study, sediment samples were densely collected to clarify the accumulation, and source contributions of heavy metals (namely Hg, Zn, Cu, As, Pb, Cd, and Cr) in the PRE. The spatial distributions of these metals exhibited significant differences, with higher values detected in the offshore areas and lower values further away.
View Article and Find Full Text PDFToxics
December 2024
Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, QC H2Y 2E7, Canada.
Rare earth elements (REEs) are considered as emerging contaminants due to their use in the fabrication process of current technologies. As such, their aquatic toxicity, especially as a mixture, is not well understood, as it has been scarcely investigated. The purpose of this study was to shed light on the sublethal and lethal toxicity of a realistic mixture of five REE in .
View Article and Find Full Text PDFArch Environ Contam Toxicol
January 2025
Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada.
Mining operations in Canada, including uranium mining and milling, generate by-products containing radionuclides, including radium-226 (Ra), a long-lived, bioaccumulative calcium (Ca) analog. Despite strict discharge regulations, there is limited evidence to suggest that current thresholds for Ra adequately protect aquatic organisms. Furthermore, Canada lacks a federal water quality guideline for Ra, underscoring the need for protective limits to safeguard aquatic ecosystems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!