Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Patients with hypertrophic cardiomyopathy (HCM) are at risk of sudden death, and individuals with ≥1 major risk markers are considered for primary prevention implantable cardioverter-defibrillators. Guidelines recommend cardiac magnetic resonance (CMR) imaging to identify high-risk imaging features. However, CMR imaging is resource intensive and is not widely accessible worldwide.
Objective: The purpose of this study was to develop electrocardiogram (ECG) deep-learning (DL) models for the identification of patients with HCM and high-risk imaging features.
Methods: Patients with HCM evaluated at Tufts Medical Center (N = 1930; Boston, MA) were used to develop ECG-DL models for the prediction of high-risk imaging features: systolic dysfunction, massive hypertrophy (≥30 mm), apical aneurysm, and extensive late gadolinium enhancement. ECG-DL models were externally validated in a cohort of patients with HCM from the Amrita Hospital HCM Center (N = 233; Kochi, India).
Results: ECG-DL models reliably identified high-risk features (systolic dysfunction, massive hypertrophy, apical aneurysm, and extensive late gadolinium enhancement) during holdout testing (c-statistic 0.72, 0.83, 0.93, and 0.76) and external validation (c-statistic 0.71, 0.76, 0.91, and 0.68). A hypothetical screening strategy using echocardiography combined with ECG-DL-guided selective CMR use demonstrated a sensitivity of 97% for identifying patients with high-risk features while reducing the number of recommended CMRs by 61%. The negative predictive value with this screening strategy for the absence of high-risk features in patients without ECG-DL recommendation for CMR was 99.5%.
Conclusion: In HCM, novel ECG-DL models reliably identified patients with high-risk imaging features while offering the potential to reduce CMR testing requirements in underresourced areas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11272903 | PMC |
http://dx.doi.org/10.1016/j.hrthm.2024.01.031 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!