The choroid plexus (ChP) in the brain ventricles has a major influence on brain homeostasis. In this study, we aimed to determine whether the circadian clock located in ChP is affected by chronodisruption caused by misalignment with the external light/dark cycle and/or inflammation. Adult mPer2 mice were maintained in the LD12:12 cycle or exposed to one of two models of chronic chronodisruption - constant light for 22-25 weeks (cLL) or 6-hour phase advances of the LD12:12 cycle repeated weekly for 12 weeks (cLD-shifts). Locomotor activity was monitored before the 4 ventricle ChP and suprachiasmatic nuclei (SCN) explants were recorded in real time for PER2-driven population and single-cell bioluminescence rhythms. In addition, plasma immune marker concentrations and gene expression in ChP, prefrontal cortex, hippocampus and cerebellum were analyzed. cLL dampened the SCN clock but did not shorten the inactivity interval (sleep). cLD-shifts had no effect on the SCN clock, but transiently affected sleep duration and fragmentation. Both chronodisruption protocols dampened the ChP clock. Although immune markers were elevated in plasma and hippocampus, levels in ChP were unaffected, and unlike the liver clock, the ChP clock was resistant to lipopolysaccharide treatment. Importantly, both chronodisruption protocols reduced glucocorticoid signaling in ChP. The data demonstrate the high resistance of the ChP clock to inflammation, highlighting its role in protecting the brain from neuroinflammation, and on the other hand its high sensitivity to chronodisruption. Our results provide a novel link between human lifestyle-induced chronodisruption and the impairment of ChP-dependent brain homeostasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbi.2024.01.217 | DOI Listing |
Fluids Barriers CNS
May 2024
Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4, 14200, Czech Republic.
Choroid plexus (ChP), the brain structure primarily responsible for cerebrospinal fluid production, contains a robust circadian clock, whose role remains to be elucidated. The aim of our study was to [1] identify rhythmically controlled cellular processes in the mouse ChP and [2] assess the role and nature of signals derived from the master clock in the suprachiasmatic nuclei (SCN) that control ChP rhythms. To accomplish this goal, we used various mouse models (WT, mPer2, ChP-specific Bmal1 knockout) and combined multiple experimental approaches, including surgical lesion of the SCN (SCNx), time-resolved transcriptomics, and single cell luminescence microscopy.
View Article and Find Full Text PDFBrain Behav Immun
March 2024
Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic. Electronic address:
The choroid plexus (ChP) in the brain ventricles has a major influence on brain homeostasis. In this study, we aimed to determine whether the circadian clock located in ChP is affected by chronodisruption caused by misalignment with the external light/dark cycle and/or inflammation. Adult mPer2 mice were maintained in the LD12:12 cycle or exposed to one of two models of chronic chronodisruption - constant light for 22-25 weeks (cLL) or 6-hour phase advances of the LD12:12 cycle repeated weekly for 12 weeks (cLD-shifts).
View Article and Find Full Text PDFNat Commun
June 2023
Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
Transmission and secretion of signals via the choroid plexus (ChP) brain barrier can modulate brain states via regulation of cerebrospinal fluid (CSF) composition. Here, we developed a platform to analyze diurnal variations in male mouse ChP and CSF. Ribosome profiling of ChP epithelial cells revealed diurnal translatome differences in metabolic machinery, secreted proteins, and barrier components.
View Article and Find Full Text PDFBiomolecules
August 2021
Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland.
Delivery of putative compounds of therapeutic value to the brain is limited by brain barriers: the blood-brain barrier located in the endothelium of the brain microvessels (BrMVs) and the blood-cerebrospinal fluid barrier located in the epithelium of the choroid plexus (ChP). Understanding their function and modulation by the circadian clock may enhance the efficacy of brain-targeting therapies. The aim of the present study was to evaluate the stability of 10 reference genes in the BrMV and ChP, isolated from male and female rats at six time points (ZT1, 5, 9, 13, 17, and 21).
View Article and Find Full Text PDFBr J Neurosurg
June 2022
Department of Neurosurgery, Ninewells Hospital, Dundee, UK.
In this article, we review the available literature about the functions of the choroid plexus (ChP), including its basic role in cerebrospinal fluid (CSF) secretion, renewal and absorption. We discuss more recently described, lesser-known functions of the ChP, such as its role in circadian rhythm regulation, chemical and immune surveillance and functional implications of ChP disruption, as occurs in neurodegenerative disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!