SRCAP complex promotes lung cancer progression by reprograming the oncogenic transcription of Hippo-YAP/TAZ signaling pathway.

Cancer Lett

Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China; Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China. Electronic address:

Published: March 2024

The activation of YAP/TAZ, a pair of paralogs of transcriptional coactivators, initiates a dysregulated transcription program, which is a key feature of human cancer cells. However, it is not fully understood how YAP/TAZ promote dysregulated transcription for tumor progression. In this study, we employed the BioID method to identify the interactome of YAP/TAZ and discovered that YAP/TAZ interact with multiple components of SRCAP complex, a finding that was further validated through endogenous and exogenous co-immunoprecipitation, as well as immunofluorescence experiments. CUT&Tag analysis revealed that SRCAP complex facilitates the deposition of histone variant H2A.Z at target promoters. The depletion of SRCAP complex resulted in a decrease in H2A.Z occupancy and the oncogenic transcription of YAP/TAZ target genes. Additionally, the blockade of SRCAP complex suppressed YAP-driven tumor growth. In a genetically engineered lung adenocarcinoma mouse model and non-small cell lung cancer patients, SRCAP complex and H2A.Z deposition were found to be upregulated. This upregulation was statistically correlated with YAP expression, pathological stages, and poor survival in lung cancer patients. Together, our study uncovers that SRCAP complex plays a critical role in YAP/TAZ oncogenic transcription by coordinating H2A.Z deposition during cancer progression, providing potential targets for cancer diagnosis and prevention.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2024.216667DOI Listing

Publication Analysis

Top Keywords

srcap complex
28
lung cancer
12
oncogenic transcription
12
cancer progression
8
dysregulated transcription
8
cancer patients
8
h2az deposition
8
srcap
7
cancer
6
yap/taz
6

Similar Publications

Article Synopsis
  • ZNHIT1 and ZNHIT2 are essential proteins for early mammalian development, and their knockout leads to embryonic lethality during the peri-implantation stage.
  • Znhit1 and Znhit2 mutant embryos show overlapping defects, such as reduced SOX2-positive inner cell mass cells and altered expression of critical genes but are impacted by different mechanisms.
  • Specifically, ZNHIT1 deficiency disrupts the incorporation of H2A.Z, affecting gene expression for proper trophoblast cell invasion, while ZNHIT2 deficiency results in splicing dysfunction due to lack of EFTUD2.
View Article and Find Full Text PDF

H2A.Z is a conserved histone variant that is localized to specific genomic regions where it plays important roles in transcription, DNA repair, and replication. Central to the biochemistry of human H2A.

View Article and Find Full Text PDF

High levels of H2A.Z promote melanoma cell proliferation and correlate with poor prognosis. However, the role of the two distinct H2A.

View Article and Find Full Text PDF

Nucleosome remodeling complexes and other regulatory factors work in concert to build a chromatin environment that directs the expression of a distinct set of genes in each cell using cis-regulatory elements (CREs), such as promoters and enhancers, that drive transcription of both mRNAs and CRE-associated non-coding RNAs (ncRNAs). Two classes of CRE-associated ncRNAs include upstream antisense RNAs (uaRNAs), which are transcribed divergently from a shared mRNA promoter, and enhancer RNAs (eRNAs), which are transcribed bidirectionally from active enhancers. The complicated network of CRE regulation by nucleosome remodelers remains only partially explored, with a focus on a select, limited number of remodelers.

View Article and Find Full Text PDF

Structural insights into histone exchange by human SRCAP complex.

Cell Discov

February 2024

Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China.

Histone variant H2A.Z is found at promoters and regulates transcription. The ATP-dependent chromatin remodeler SRCAP complex (SRCAP-C) promotes the replacement of canonical histone H2A-H2B dimer with H2A.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!