Objective: To review recent technological advancement in imaging, surgical visualization, robotics technology, and the use of artificial intelligence in surgical vitreoretinal (VR) diseases.
Background: Technological advancements in imaging enhance both preoperative and intraoperative management of surgical VR diseases. Widefield imaging in fundal photography and OCT can improve assessment of peripheral retinal disorders such as retinal detachments, degeneration, and tumors. OCT angiography provides a rapid and noninvasive imaging of the retinal and choroidal vasculature. Surgical visualization has also improved with intraoperative OCT providing a detailed real-time assessment of retinal layers to guide surgical decisions. Heads-up display and head-mounted display utilize 3-dimensional technology to provide surgeons with enhanced visual guidance and improved ergonomics during surgery. Intraocular robotics technology allows for greater surgical precision and is shown to be useful in retinal vein cannulation and subretinal drug delivery. In addition, deep learning techniques leverage on diverse data including widefield retinal photography and OCT for better predictive accuracy in classification, segmentation, and prognostication of many surgical VR diseases.
Conclusion: This review article summarized the latest updates in these areas and highlights the importance of continuous innovation and improvement in technology within the field. These advancements have the potential to reshape management of surgical VR diseases in the very near future and to ultimately improve patient care.
Financial Disclosure(s): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.oret.2024.01.018 | DOI Listing |
J Surg Educ
January 2025
Washington University of St. Louis, Department of Orthopaedic Surgery, St. Louis, Missouri.
Objective: Orthopedic residents are tasked with rapidly acquiring clinical and surgical skills, especially during their PGY-1 year. However, resource constraints and other factors frequently cause skills training to fall short of established guidelines. We aimed to design and evaluate a cross-institutional, month-long curriculum aimed at pooling resources to optimize training.
View Article and Find Full Text PDFJ Neurosurg Anesthesiol
November 2024
Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA.
This systematic review aimed to identify and describe best practice for the intraoperative anesthetic management of patients undergoing emergent/urgent decompressive craniotomy or craniectomy for any indication. The PubMed, Scopus, EMBASE, and Cochrane databases were searched for articles related to urgent/emergent craniotomy/craniectomy for intracranial hypertension or brain herniation. Only articles focusing on intraoperative anesthetic management were included; those investigating surgical or intensive care unit management were excluded.
View Article and Find Full Text PDFJ Neurosurg Spine
January 2025
2Anesthesiology, University of Miami Miller School of Medicine, Miami, Florida.
Objective: Awake, endoscopic spinal fusion has been utilized as an ultra-minimally invasive surgery technique to accomplish the goals of spinal fixation, fusion, and disc height restoration. While many techniques exist for this approach, this series represents a single institution's experience with a large cohort and the evolution of this method.
Methods: The medical records of a consecutive series of 400 patients treated over a 10-year period were retrospectively reviewed.
J Neurosurg
January 2025
Departments of1Neurological Surgery.
Objective: Tumor consistency, or fibrosity, affects the ability to optimally resect meningiomas, especially with recent trends evolving toward minimally invasive approaches. The authors' team previously validated a practical 5-point scale for intraoperative grading of meningioma consistency. The impact of meningioma consistency on surgical management and outcomes, however, has yet to be explored.
View Article and Find Full Text PDFJ Neurosurg Spine
January 2025
1Neuroscience Institute, Carolina Neurosurgery & Spine Associates, Carolinas Healthcare System, Charlotte, North Carolina.
Objective: Cervical spondylotic myelopathy (CSM) shows varying levels of improvement after surgical treatment. While some patients improve soon after surgery, others may take months to years to show any signs of improvement. The goal of this study was to evaluate postoperative improvement, patient-reported outcomes, and patient satisfaction up to 2 years after surgical treatment for CSM, which will help optimize the current treatment strategies and effectively manage patient expectations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!