Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Textile dyes are the burgeoning environmental contaminants across the world. They might be directly disposed of from textile industries into the aquatic bodies, which act as the direct source for the entire ecosystem, ultimately impacting the human beings. Hence, it is essential to dissect the potential adverse outcomes of textile dye exposure on aquatic plants, aquatic fauna, terrestrial entities, and humans. Analysis of appropriate literature has revealed that textile dye effluents could affect the aquatic biota by disrupting their growth and reproduction. Various aquatic organisms are targeted by textile dye effluents. In such organisms, these chemicals affect their development, behavior, and induce oxidative stress. General populations of humans are exposed to textile dyes via the food chain and drinking contaminated water. In humans, textile dyes are biotransformed into electrophilic intermediates and aromatic amines by the enzymes of the cytochrome family. Textile dyes and their biotransformed products form the DNA and protein adducts at sub-cellular moiety. Moreover, these compounds catalyze the production of free radicals and oxidative stress, and trigger the apoptotic cascades to produce lesions in multiple organs. In addition, textile dyes modulate epigenetic factors like DNA methyltransferase and histone deacetylase to promote carcinogenesis. Several bioremediation approaches involving algae, fungi, bacteria, biomembrane filtration techniques, etc., have been tested and some other hybrid systems are currently under investigation to treat textile dye effluents. However, many such approaches are at the trial stage and require further research to develop more efficient, cost-effective, and easy-to-handle techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.120103 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!