Monogenic causes of inflammatory bowel diseases (IBD) are increasingly being discovered. To date, much attention has been placed in those resulting from inborn errors of immunity. Therapeutic efforts have been largely focused on offering personalized immune modulation or curative bone marrow transplant for patients with IBD and underlying immune disorders. To date, less emphasis has been placed on monogenic causes of IBD that pertain to impairment of the intestinal epithelial barrier. Here, we provide a comprehensive review of monogenic causes of IBD that result in impaired intestinal epithelial barrier that are categorized into 6 important functions: (1) epithelial cell organization, (2) epithelial cell intrinsic functions, (3) epithelial cell apoptosis and necroptosis, (4) complement activation, (5) epithelial cell signaling, and (6) control of RNA degradation products. We illustrate how impairment of any of these categories can result in IBD. This work reviews the current understanding of the genes involved in maintaining the intestinal barrier, the inheritance patterns that result in dysfunction, features of IBD resulting from these disorders, and pertinent translational work in this field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519031 | PMC |
http://dx.doi.org/10.1093/ibd/izad319 | DOI Listing |
Anticancer Agents Med Chem
January 2025
Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
Unlabelled: Mesenchymal‒epithelial transition factor (c-Met), a receptortyrosine kinase (RTK), plays a vital role in cell proliferation, migration and invasion, and tumour metastasis.
Objective: With increasing duration of treatment, many tumours gradually develop drug resistance. Therefore, novel antitumour drugs need to be developed to treat patients with tumours.
Extracell Vesicles Circ Nucl Acids
November 2024
Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland.
Extracellular vesicles (EVs) are involved in intercellular and interkingdom communication in the complex communities that constitute the niche-specific microbiome of the colonized host. Therefore, studying the structure and content of EVs produced by resident bacteria is crucial to understanding their functionality and impact on the host and other microorganisms. Bacterial EVs were isolated by differential centrifugation, their size and concentration were measured by transmission electron microscopy and nanoparticle tracking analysis, and the cargo proteins were identified by liquid chromatography coupled to tandem mass spectrometry.
View Article and Find Full Text PDFiScience
January 2025
College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, P.R. China.
Pyroptosis plays an important role in attracting innate immune cells to eliminate infected niches. Our study focuses on how influenza A virus (IAV) infection triggers pyroptosis in respiratory epithelial cells. Here, we report that IAV infection induces pyroptosis in a human and murine airway epithelial cell line.
View Article and Find Full Text PDFWorld J Gastroenterol
January 2025
Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300052, China.
Background: Regulator of G protein signaling (RGS) proteins participate in tumor formation and metastasis by acting on the α-subunit of heterotrimeric G proteins. The specific effect of RGS, particularly , on the progression of gastric cancer (GC) is not yet clear.
Aim: To explore the role and underlying mechanisms of action of in GC development.
Heliyon
January 2025
School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
Schwann cells, as crucial regenerative cells, possess the ability to facilitate axon growth following peripheral nerve injury. However, the regeneration efficiency dominated by Schwann cells is impaired by factors such as the severity of peripheral nervous injury, aging, and metabolic disease. Cause the limitations of clinical treatments, it is necessary to urgently search for new substances that could reinforce the functionality of Schwann cells and promote nerve regeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!