Osteosarcoma (OS) represents a profoundly invasive malignancy of the skeletal system. T cell exhaustion (Tex) is known to facilitate immunosuppression and tumor progression, but its role in OS remains unclear. In this study, single-cell RNA sequencing data was employed to identify exhausted T cells within the tumor immune microenvironment (TIME) of OS. We found that exhausted T cells exhibited substantial infiltration in OS samples. Pseudotime trajectory analysis revealed a progressive increase in the expression of various Tex marker genes, including PDCD1, CTLA4, LAG3, ENTPD1, and HAVCR2 in OS. GSVA showed that apoptosis, fatty acid metabolism, xenobiotic metabolism, and the interferon pathway were significantly activated in exhausted T cells in OS. Subsequently, a prognostic model was constructed using two Tex-specific genes, MYC and FCGR2B, which exhibited exceptional prognostic accuracy in two independent cohorts. Drug sensitivity analysis revealed that OS patients with a low Tex risk were responsive to Dasatinib and Pazopanib. Finally, immunohistochemistry verified that MYC and FCGR2B were significantly upregulated in OS tissues compared with adjacent tissues. This study investigates the role of Tex within the TIME of OS, and offers novel insights into the mechanisms underlying disease progression as well as the potential treatment strategies for OS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10821851PMC
http://dx.doi.org/10.1007/s00262-023-03585-2DOI Listing

Publication Analysis

Top Keywords

exhausted cells
12
cell exhaustion
8
immune microenvironment
8
single-cell rna
8
analysis revealed
8
myc fcgr2b
8
unraveling cell
4
exhaustion immune
4
microenvironment osteosarcoma
4
osteosarcoma single-cell
4

Similar Publications

Background: Endogenous retrovirus (ERV) elements are genomic footprints of ancestral retroviral infections within the human genome. While the dysregulation of ERV transcription has been linked to immune cell infiltration in various cancers, its relationship with immune checkpoint inhibitor (ICI) response in solid tumors, particularly metastatic clear-cell renal cell carcinoma (ccRCC), remains inadequately explored.

Methods: This study analyzed patients with metastatic ccRCC from two prospective clinical trials, encompassing 181 patients receiving nivolumab in the CheckMate trials (-009 to -010 and -025) and 48 patients treated with the ipilimumab-nivolumab combination in the BIONIKK trial.

View Article and Find Full Text PDF

Background: More efficient therapeutic options for non-small cell lung cancer (NSCLC) are needed as the survival at 5 years of metastatic disease is near zero. In this regard, we used a preclinical model of metastatic lung adenocarcinoma (SV2-OVA) to assess the safety and efficacy of novel radio-immunotherapy combining hypofractionated radiotherapy (HRT) with muPD1-IL2v immunocytokine and muFAP-CD40 bispecific antibody.

Methods: We evaluated the changes in the lung immune microenvironment at multiple timepoints following combination therapies and investigated their underlying antitumor mechanisms.

View Article and Find Full Text PDF

Malaria: Factors affecting disease severity, immune evasion mechanisms, and reversal of immune inhibition to enhance vaccine efficacy.

PLoS Pathog

January 2025

Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America.

Malaria is a complex parasitic disease caused by species of Plasmodium parasites. Infection with the parasites can lead to a spectrum of symptoms and disease severity, influenced by various parasite, host, and environmental factors. There have been some successes in developing vaccines against the disease recently, but the vaccine efficacies require improvement.

View Article and Find Full Text PDF

Photodynamic therapy (PDT), a local cancer treatment using photosensitizers, has been reported to enhance antitumor immune responses by inducing immunogenic cell death. Although several studies have demonstrated the synergistic antitumor effects of PDT and immune checkpoint blockage (ICB), the detailed underlying mechanisms remain poorly understood. In this study, we investigated the immunological effects of PDT with talaporfin (Tal-PDT), a clinically approved photosensitizer, using bilateral tumor-bearing mouse models.

View Article and Find Full Text PDF

The molecular receptor NKBB enhances the persistence and anti-hepatocellular carcinoma activity of GPC3 CAR-T cells.

Pharmacol Res

January 2025

Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China; Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. Electronic address:

Chimeric antigen receptor (CAR) T cells have encouraging results in the treatment of hematological malignancies. However, CAR-T therapy still faces numerous challenges against solid tumors, such as hepatocellular carcinoma (HCC), owing to heterogeneous antigen expression in tumor cells, limited persistence of CAR-T cells, etc. Therefore, to treat HCC more effectively, we connected the molecular receptor NKBB to a second-generation glypican-3 (GPC3) CAR to construct GC3328z-NKBB CAR-T cells, which have double specific targets of GPC3 and NKG2DLs (natural killer group 2, member D ligands), dual co-stimulation of CD28 and 41BB, and a single CD3ζ chain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!