Metal accumulation is used by some plants as a defence against herbivores. Yet, herbivores may adapt to these defences, becoming less susceptible. Moreover, ecosystems often contain plants that do and do not accumulate metals, but whether such heterogeneity affects herbivore adaptation remains understudied. Here, we performed experimental evolution to test whether the spider mite Tetranychus evansi adapts to plants with high cadmium concentrations, in homogeneous (plants with cadmium) or heterogeneous (plants with or without cadmium) environments. For that we used tomato plants, which accumulate cadmium, thus affecting the performance of these spider mites. We measured mite fecundity, hatching rate, and the number of adult offspring after 12 and 33 generations and habitat choice after 14 and 51 generations, detecting no trait change, which implies the absence of adaptation. We then tested whether this was due to a lack of genetic variation in the traits measured and, indeed, additive genetic variance was low. Interestingly, despite no signs of adaptation, we observed a decrease in fecundity and number of adult offspring produced on cadmium-free plants, in the populations evolving in environments with cadmium. Therefore, evolving in environments with cadmium reduces the growth rate of spider mite populations on non-accumulating plants. Possibly, other traits contributed to population persistence on plants with cadmium. This calls for more studies addressing herbivore adaptation to plant metal accumulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jeb/voae003 | DOI Listing |
Anal Chem
January 2025
School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an 710072, China.
Lymphoma is a malignant cancer characterized by a rapidly increasing incidence, complex etiology, and lack of obvious early symptoms. Efficient theranostics of lymphoma is of great significance in improving patient outcomes, empowering informed decision-making, and driving medical innovation. Herein, we developed a multifunctional nanoplatform for precise optical imaging and therapy of lymphoma based on a new photosensitizer (1-oxo-1-benzoo[de]anthracene-2,3-dicarbonitrile-triphenylamine (OBADC-TPA)).
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA.
Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.
Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.
Pharmaceutics
January 2025
Laboratory of Nuclear Medicine (LIM-43), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-911, SP, Brazil.
Background/objectives: Dithiocarbazates (DTCs) and their metal complexes have been studied regarding their property as anticancer activities. In this work, using S-benzyl-5-hydroxy-3-methyl-5-phenyl-4,5-dihydro-1H-pirazol-1-carbodithionate (Hbdtc), we prepared [ReO(bdtc)(Hbdtc)] and [[Tc]TcO(bdtc)(Hbdtc)] complexes for tumor uptake and animal biodistribution studies.
Methods: Re complex was prepared by a reaction of H2bdtc and (NBu)[ReOCl], the final product was characterized by IR, H NMR, CHN, and MS-ESI.
Plants (Basel)
January 2025
Earth Sciences Department, NOVA School of Sciences and Technology, Campus de Caparica, 2829-516 Caparica, Portugal.
Potato ( L.) is the world's third most popular vegetable in terms of consumption and the fourth most produced. Potatoes can be easily cultivated in different climates and locations around the globe and often in soils contaminated by heavy metals due to industrial activities.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Plant Physiology, Faculty of Biology, Sofia University, 8 Dragan Tsankov Bul., 1164 Sofia, Bulgaria.
Microalgae offer a promising alternative for heavy metal removal, and the search for highly efficient strains is ongoing. This study investigated the potential of two microalgae, sp. BGV (Chlorophyta) and Schwabe & Simonsen (Cyanoprokaryota), to bind zinc ions (Zn⁺) and protect higher plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!