AI Article Synopsis

  • - Maternal nutritional status, particularly a high-fat diet (mHFD), significantly impacts the development and health of offspring, leading to increased deformities during embryonic development.
  • - In a study using medaka fish, mHFD was linked to alterations in mature egg contents, including decreased catabolism of amino acids and increased lipid levels, affecting transcriptomic and metabolomic profiles.
  • - The findings suggest that poor egg quality, characterized by lower yolk protein and disrupted metabolic processes, plays a crucial role in causing higher rates of deformities in offspring from mothers on a high-fat diet.

Article Abstract

Maternal nutritional status can affect development and metabolic phenotypes of progeny in animals. The effects of maternal diet are thought to be mediated mainly by changes inside oocytes such as organelles, maternal RNAs, and metabolites. However, to what extent each factor contributes to offspring phenotypes remains uncertain, especially in viviparous mammalian systems, where factors other than oocytes, such as placenta and milk, need to be considered. Here, using the medaka fish as an oviparous vertebrate model, we examined whether maternal high-fat diet (mHFD) feeding affects offspring development and what kind of changes occur in the contents of mature eggs. We found that mHFD caused the high frequency of embryonic deformities of offspring, accompanied by downregulation of transcription- and translation-related genes and zygotic transcripts at the blastula stage. Transcriptomic and metabolomic analyses of mature eggs suggested decreased catabolism of amino acids and glycogen, moderate upregulation of endoplasmic reticulum stress-related genes, and elevated lipid levels in mHFD eggs. Furthermore, high-fat diet females showed a higher incidence of oocyte atresia and downregulation of egg protein genes in the liver. These data suggest that attenuated amino acid catabolism triggered by decreased yolk protein load/processing, as well as elevated lipid levels inside eggs, are the prime candidates that account for the higher incidence of embryonic deformities in mHFD offspring. Our study presents a comprehensive data on the changes inside eggs in a mHFD model of nonmammalian vertebrates and provides insights into the mechanisms of parental nutritional effects on offspring.

Download full-text PDF

Source
http://dx.doi.org/10.1210/endocr/bqae006DOI Listing

Publication Analysis

Top Keywords

high-fat diet
12
maternal high-fat
8
medaka fish
8
changes inside
8
mature eggs
8
eggs mhfd
8
embryonic deformities
8
elevated lipid
8
lipid levels
8
higher incidence
8

Similar Publications

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

The incidence of type 2 diabetes has risen globally, in parallel with the obesity epidemic and environments promoting a sedentary lifestyle and low-quality diet. There has been scrutiny of ultra-processed foods (UPFs) as a driver of type 2 diabetes, underscored by their increasing availability and intake worldwide, across countries of all incomes. This narrative review addresses the accumulated evidence from investigations of the trends in UPF consumption and the relationship with type 2 diabetes incidence.

View Article and Find Full Text PDF

Exposure to toxins causes lasting damaging effects on the body. Numerous studies in humans and animals suggest that diet has the potential to modify the epigenome and these modifications can be inherited transgenerationally, but few studies investigate how diet can protect against negative effects of toxins. Potential evidence in the primary literature supports that caloric restriction, high-fat diets, high protein-to-carbohydrate ratios, and dietary supplementation protect against environmental toxins and strengthen these effects on their offspring's epigenome.

View Article and Find Full Text PDF

Obesity, along with hypoxia, is known to be a risk factor for pulmonary hypertension (PH), which can lead to right ventricular hypertrophy and eventually heart failure. Both obesity and PH influence the autonomic nervous system (ANS), potentially aggravating changes in the right ventricle (RV). This study investigates the combined effects of obesity and hypoxia on the autonomic innervation of the RV in a mouse model.

View Article and Find Full Text PDF

The study evaluated the anti-hyperlipidemic effects of myrcenol and curzerene on a high fat diet induced hyperlipidemia rat model. Thirty male albino rats were fed on a high-fat diet for four months. The HFD-induced hyperperlipidemia rats were treated with rosuvastatin (10 mg/kg), curzerene (130 mg/kg) and myrcenol (100 mg/kg) for four weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!