A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

2D Ultrathin Titanium Nitride Nanosheets as Separator Coatings for Li-S Batteries. | LitMetric

2D Ultrathin Titanium Nitride Nanosheets as Separator Coatings for Li-S Batteries.

Small

State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310000, China.

Published: July 2024

Transition metal nitrides (TMNs) are affirmed to be an appealing candidate for boosting the performance of lithium-sulfur (Li-S) batteries due to their excellent conductivity, strong interaction with sulfur species, and the effective catalytic ability for conversion of polysulfides. However, the traditional bulk TMNs are difficult to achieve large active surface area and fast transport channels for electrons/ions simultaneously. Here, a 2D ultrathin geometry of titanium nitride (TiN) is realized by a facile topochemical conversion strategy, which can not only serve as an interconnected conductive platform but also expose abundant catalytic active sites. The ultrathin TiN nanosheets are coated on a commercial separator, serving as a multifunctional interlayer in Li-S batteries for hindering the polysulfide shuttle effect by strong capture and fast conversion of polysulfides, achieving a high initial capacity of 1357 mAh g at 0.1 C and demonstrating a low capacity decay of only 0.046% per cycle over 1000 cycles at 1 C.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202307784DOI Listing

Publication Analysis

Top Keywords

li-s batteries
12
titanium nitride
8
conversion polysulfides
8
ultrathin titanium
4
nitride nanosheets
4
nanosheets separator
4
separator coatings
4
coatings li-s
4
batteries transition
4
transition metal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!