Prosthetic hands play a vital role in restoring forearm functionality for patients who have suffered hand loss or deformity. The hand gesture intention recognition system serves as a critical component within the prosthetic hand system. However, accurately and swiftly identifying hand gesture intentions remains a challenge in existing approaches. Here, a real-time motion intention recognition system utilizing liquid metal composite sensor bracelets is proposed. The sensor bracelet detects pressure signals generated by forearm muscle movements to recognize hand gesture intent. Leveraging the remarkable pressure sensitivity of liquid metal composites and the efficient classifier based on the optimized recognition algorithm, this system achieves an average offline and real-time recognition accuracy of 98.2% and 92.04%, respectively, with an average recognition speed of 0.364 s. Thus, this wearable system shows advantages in superior recognition speed and accuracy. Furthermore, this system finds applications in master-slave control of prosthetic hands in unmanned scenarios, such as electrically powered operations, space exploration, and telemedicine. The proposed system promises significant advances in next-generation intent-controlled prosthetic hands and robots.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462307 | PMC |
http://dx.doi.org/10.1002/advs.202305251 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!