An Emerging Approach of Age-Related Hearing Loss Research: Application of Integrated Multi-Omics Analysis.

Adv Biol (Weinh)

Department of Otolaryngology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China.

Published: April 2024

As one of the most common otologic diseases in the elderly, age-related hearing loss (ARHL) usually characterized by hearing loss and cognitive disorders, which have a significant impact on the elderly's physical and mental health and quality of life. However, as a typical disease of aging, it is unclear why aging causes widespread hearing impairment in the elderly. As molecular biological experiments have been conducted for research recently, ARHL is gradually established at various levels with the application and development of integrated multi-omics analysis in the studies of ARHL. Here, the recent progress in the application of multi-omics analysis in the molecular mechanisms of ARHL development and therapeutic regimens, including the combined analysis of different omics, such as transcriptome, proteome, and metabolome, to screen for risk sites, risk genes, and differences in lipid metabolism, etc., is outlined and the integrated histological data further promote the profound understanding of the disease process as well as physiological mechanisms of ARHL. The advantages and disadvantages of multi-omics analysis in disease research are also discussed and the authors speculate on the future prospects and applications of this part-to-whole approach, which may provide more comprehensive guidance for ARHL and aging disease prevention and treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adbi.202300613DOI Listing

Publication Analysis

Top Keywords

multi-omics analysis
16
hearing loss
12
age-related hearing
8
integrated multi-omics
8
mechanisms arhl
8
arhl
6
analysis
5
emerging approach
4
approach age-related
4
hearing
4

Similar Publications

Understanding the molecular landscape of nonmuscle-invasive bladder cancer (NMIBC) is essential to improve risk assessment and treatment regimens. We performed a comprehensive genomic analysis of patients with NMIBC using whole-exome sequencing (n = 438), shallow whole-genome sequencing (n = 362) and total RNA sequencing (n = 414). A large genomic variation within NMIBC was observed and correlated with different molecular subtypes.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) drive metastasis, the leading cause of death in individuals with breast cancer. Due to their low abundance in the circulation, robust CTC expansion protocols are urgently needed to effectively study disease progression and therapy responses. Here we present the establishment of long-term CTC-derived organoids from female individuals with metastatic breast cancer.

View Article and Find Full Text PDF

Background: This study aimed to investigate the prognostic impact of lymph node metastasis (LNM) on patients with colorectal cancer liver metastasis (CRLM) and elucidate the underlying immune mechanisms using multiomics profiling.

Methods: We enrolled patients with CRLM from the US Surveillance, Epidemiology, and End Results (SEER) cohort and a multicenter Chinese cohort, integrating bulk RNA sequencing, single-cell RNA sequencing and proteomics data. The cancer-specific survival (CSS) and immune profiles of the tumor-draining lymph nodes (TDLNs), primary tumors and liver metastasis were compared between patients with and without LNM.

View Article and Find Full Text PDF

While ultrasonography effectively diagnoses Hashimoto's thyroiditis (HT), exploring its transcriptomic landscape could reveal valuable insights into disease mechanisms. This study aimed to identify HT-associated RNA signatures and investigate their potential for enhanced molecular characterization. Samples comprising 31 HT patients and 30 healthy controls underwent RNA sequencing of peripheral blood.

View Article and Find Full Text PDF

Spatially resolved omics (SRO) technologies enable the identification of cell types while preserving their organization within tissues. Application of such technologies offers the opportunity to delineate cell-type spatial relationships, particularly across different length scales, and enhance our understanding of tissue organization and function. To quantify such multi-scale cell-type spatial relationships, we present CRAWDAD, Cell-type Relationship Analysis Workflow Done Across Distances, as an open-source R package.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!