A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Targeting of Specialized Metabolites Biosynthetic Enzymes to Membranes and Vesicles by Posttranslational Palmitoylation: A Mechanism of Non-Conventional Traffic and Secretion of Fungal Metabolites. | LitMetric

AI Article Synopsis

  • The production of secondary metabolites in fungi occurs during their later developmental stages, with specific enzymes located in various subcellular compartments like the cytosol and endoplasmic reticulum.
  • Enzymes initially found in the cytosol undergo posttranslational modifications like palmitoylation, which helps them reach membrane vesicle systems, playing a crucial role in protein function and secretion.
  • Notable modifications such as palmitoylation specifically direct enzymes for melanin biosynthesis to endosomes, while others may be secreted through standard pathways for further metabolic processes in the cell wall.

Article Abstract

In nature, the formation of specialized (secondary) metabolites is associated with the late stages of fungal development. Enzymes involved in the biosynthesis of secondary metabolites in fungi are located in distinct subcellular compartments including the cytosol, peroxisomes, endosomes, endoplasmic reticulum, different types of vesicles, the plasma membrane and the cell wall space. The enzymes traffic between these subcellular compartments and the secretion through the plasma membrane are still unclear in the biosynthetic processes of most of these metabolites. Recent reports indicate that some of these enzymes initially located in the cytosol are later modified by posttranslational acylation and these modifications may target them to membrane vesicle systems. Many posttranslational modifications play key roles in the enzymatic function of different proteins in the cell. These modifications are very important in the modulation of regulatory proteins, in targeting of proteins, intracellular traffic and metabolites secretion. Particularly interesting are the protein modifications by palmitoylation, prenylation and miristoylation. Palmitoylation is a thiol group-acylation (S-acylation) of proteins by palmitic acid (C16) that is attached to the SH group of a conserved cysteine in proteins. Palmitoylation serves to target acylated proteins to the cytosolic surface of cell membranes, e.g., to the smooth endoplasmic reticulum, whereas the so-called toxisomes are formed in trichothecene biosynthesis. Palmitoylation of the initial enzymes involved in the biosynthesis of melanin serves to target them to endosomes and later to the conidia, whereas other non-palmitoylated laccases are secreted directly by the conventional secretory pathway to the cell wall space where they perform the last step(s) of melanin biosynthesis. Six other enzymes involved in the biosynthesis of endocrosin, gliotoxin and fumitremorgin believed to be cytosolic are also targeted to vesicles, although it is unclear if they are palmitoylated. Bioinformatic analysis suggests that palmitoylation may be frequent in the modification and targeting of polyketide synthetases and non-ribosomal peptide synthetases. The endosomes may integrate other small vesicles with different cargo proteins, forming multivesicular bodies that finally fuse with the plasma membrane during secretion. Another important effect of palmitoylation is that it regulates calcium metabolism by posttranslational modification of the phosphatase calcineurin. Mutants defective in the Akr1 palmitoyl transferase in several fungi are affected in calcium transport and homeostasis, thus impacting on the biosynthesis of calcium-regulated specialized metabolites. The palmitoylation of secondary metabolites biosynthetic enzymes and their temporal distribution respond to the conidiation signaling mechanism. In summary, this posttranslational modification drives the spatial traffic of the biosynthetic enzymes between the subcellular organelles and the plasma membrane. This article reviews the molecular mechanism of palmitoylation and the known fungal palmitoyl transferases. This novel information opens new ways to improve the biosynthesis of the bioactive metabolites and to increase its secretion in fungi.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10816013PMC
http://dx.doi.org/10.3390/ijms25021224DOI Listing

Publication Analysis

Top Keywords

plasma membrane
16
biosynthetic enzymes
12
secondary metabolites
12
enzymes involved
12
involved biosynthesis
12
metabolites
9
palmitoylation
9
specialized metabolites
8
metabolites biosynthetic
8
enzymes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!