Light engineering of correlated states in topological materials provides a new avenue of achieving exotic topological phases inaccessible by conventional tuning methods. Here we demonstrate a light control of correlation gaps in a model charge-density-wave (CDW) and polaron insulator (TaSe)I recently predicted to be an axion insulator. Our ultrafast terahertz photocurrent spectroscopy reveals a two-step, non-thermal melting of polarons and electronic CDW gap via the fluence dependence of a longitudinal circular photogalvanic current. This helicity-dependent photocurrent reveals continuous ultrafast phase switches from the polaronic state to the CDW (axion) phase, and finally to a hidden Weyl phase as the pump fluence increases. Additional distinctive attributes aligning with the light-induced switches include: the mode-selective coupling of coherent phonons to the polaron and CDW modulation, and the emergence of a non-thermal chiral photocurrent above the pump threshold of CDW-related phonons. The demonstrated ultrafast chirality control of correlated topological states here holds large potentials for realizing axion electrodynamics and advancing quantum-computing applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10817907PMC
http://dx.doi.org/10.1038/s41467-024-45036-1DOI Listing

Publication Analysis

Top Keywords

ultrafast phase
8
phase switches
8
chirality manipulation
4
ultrafast
4
manipulation ultrafast
4
phase
4
switches correlated
4
correlated cdw-weyl
4
cdw-weyl semimetal
4
semimetal light
4

Similar Publications

Disulfide bonds are ubiquitous molecular motifs that influence the tertiary structure and biological functions of many proteins. Yet, it is well known that the disulfide bond is photolabile when exposed to ultraviolet C (UVC) radiation. The deep-UV-induced S─S bond fragmentation kinetics on very fast timescales are especially pivotal to fully understand the photostability and photodamage repair mechanisms in proteins.

View Article and Find Full Text PDF

Observation of Large Low-Field Magnetoresistance in Layered (NdNiO):NdO Films at High Temperatures.

Adv Mater

January 2025

State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.

Large low-field magnetoresistance (LFMR, < 1 T), related to the spin-disorder scattering or spin-polarized tunneling at boundaries of polycrystalline manganates, holds considerable promise for the development of low-power and ultrafast magnetic devices. However, achieving significant LFMR typically necessitates extremely low temperatures due to diminishing spin polarization as temperature rises. To address this challenge, one strategy involves incorporating Ruddlesden-Popper structures (ABO):AO, which are layered derivatives of perovskite structure capable of potentially inducing heightened magnetic fluctuations at higher temperatures.

View Article and Find Full Text PDF

Dynamical Disorder in the Mesophase Ferroelectric HdabcoClO: A Machine-Learned Force Field Study.

J Phys Chem C Nanomater Interfaces

January 2025

Department of Mechanical Engineering and Technology Management, Norwegian University of Life Sciences, N-1433 AS, Norway.

Hybrid molecular ferroelectrics with orientationally disordered mesophases offer significant promise as lead-free alternatives to traditional inorganic ferroelectrics owing to properties such as room temperature ferroelectricity, low-energy synthesis, malleability, and potential for multiaxial polarization. The ferroelectric molecular salt HdabcoClO is of particular interest due to its ultrafast ferroelectric room-temperature switching. However, so far, there is limited understanding of the nature of dynamical disorder arising in these compounds.

View Article and Find Full Text PDF

The Photoinduced Response of Antimony from Femtoseconds to Minutes.

Adv Mater

January 2025

Institute of Materials Physics, University of Münster, Wilhelm-Klemm-Str. 10, 48149, Münster, Germany.

As a phase change material (PCM), antimony exhibits a set of desirable properties that make it an interesting candidate for photonic memory applications. These include a large optical contrast between crystalline and amorphous solid states over a wide wavelength range. Switching between the states is possible on nanosecond timescales by applying short heating pulses.

View Article and Find Full Text PDF

Photoinduced Fröhlich Interaction-Driven Distinct Electron- and Hole-Polaron Behaviors in Hybrid Organic-Inorganic Perovskites by Ultrafast Terahertz Probes.

ACS Nano

January 2025

School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China.

The formation of large polarons resulting from the Fröhlich coupling of photogenerated carriers with the polarized crystal lattice is considered crucial in shaping the outstanding optoelectronic properties in hybrid organic-inorganic perovskite crystals. Until now, the initial polaron dynamics after photoexcitation have remained elusive in the hybrid perovskite system. Here, based on the terahertz time-domain spectroscopy and optical-pump terahertz probe, we access the nature of interplay between photoexcited unbound charge carriers and optical phonons in MAPbBr within the initial 5 ps after excitation and have demonstrated the simultaneous existence of both electron- and hole-polarons, together with the photogenerated carrier dynamic process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!