Research published between 2001 and 2022 on the functionalization of remote positions of steroids, as well as the use of this technique in the generation of biologically active compounds has been reviewed. In the first section of the analysis established and novel methods for activation of sites deemed to be remote were reported. A series of manganese- (mainly), rhodium-, ruthenium- and osmium-centered porphyrins as catalysts in the presence of PIDA as oxidant have effected hydroxylation at C-1, -5, -6, -7, -11, -14, -15, -16, -17, -20, -24 and -25. Dioxiranes have been utilized in inserting hydroxyl groups at the 5, 12, 14, 15, 16, 17, 20, 24 and 25 positions (tertiary centers for the most part). Alcohols at C-12 and -16 were oxidized further to ketones. The Schönecker oxidation, discovered and developed during the period, has revolutionized the selective functionalization at C-12 of steroids possessing a 17-keto group. In the presence of iron-centered PDP- and MCP-based catalysts, hydrogen peroxide and acetic acid, substrates tended to be hydroxylated at C-6 and -12, with further oxidation to ketones often accompanying this reaction. The hypohalite reaction, utilizing the more modern Suarez conditions (irradiation in the presence of iodine and PIDA), was reported to facilitate the insertion of a hydroxyl moiety five atoms away from an existing alcohol oxygen. Steroidal-3β-diazoacetates tend to decompose on heating with di-rhodium-centered catalysts while activating carbons four or five atoms away. Chromium- and iron-based acetates were observed to functionalize C-5 and -25. Other reactions involving ring cleavage and halogenation, ketone irradiation and α-hydroxylation of ethers were also covered. The syntheses of compounds with marked biological activity from readily available steroids is described in the second section of the study. Cyclopamine, cephalostatin-1, ritterazine B and three polyhydroxypregnanaes (pergularin, utendin and tomentogenin) were generated in sequences in which a key step required hydroxylation at C-12 using the Schönecker reaction. A crucial stage in the preparation of cortistatin A, the saundersioside core, eurysterol A, 5,6-dihydroglaucogenin C, as well as clinostatins A and B involved the functionalization of C-18 or -19 utilizing hypohalite chemistry. The synthetic route to xestobergsterol A, pavonin-4-aglycone and ouagabagenin included a transformation where ketone irradiation played a part in either producing a Δ or a C-19 activated steroid. The radical relay reaction, where a 17α-chloro-steroid was formed, was central in the generation of pythocholic acid. The lead tetraacetate reaction was pivotal in the functionalization of C-19 during the synthesis of cyclocitrinol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.steroids.2023.109362 | DOI Listing |
Metabolites
December 2024
College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
Volatile compounds have a deep influence on the quality and application of the medicinal herb ; however, little is known about the effect of UV-B radiation on volatile metabolites. We herein investigated the effects of UV-B exposure on the volatile compounds and transcriptome of to assess the potential for improving its quality and medicinal characteristics. Out of 733 volatiles obtained, a total of 133 differentially expressed metabolites (DEMs) were identified by metabolome analysis.
View Article and Find Full Text PDFBiomed Pharmacother
December 2024
Medical Research Center, Oulu University Hospital, Oulu, Finland; Department of Internal Medicine, Länsi-Pohja Central Hospital, Kemi, Finland; Biomedicine and Internal Medicine Research Unit, University of Oulu, Oulu, Finland.
It has been demonstrated that diffuse large B-cell lymphoma (DLBCL) is especially sensitive to ferroptosis. Currently, confirming the presence of ferroptosis requires flow cytometry, which is a time consuming and labor-intensive task. Blistering of the cell membrane has been shown to be a ferroptosis-specific morphological change.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Sorbonne Université, CNRS, De la Molécule aux Nano-Objets: Réactivité, Interactions, Spectroscopies, MONARIS, Paris, 75005, France.
The distribution of isomeric species in the interstellar medium cannot be directly related to their relative energetic stabilities but more to their mechanisms of formation and evolution. The abundances of the three isomers of CHO, cyclopropenone, propynal and propadienone, are an example among many other interstellar species wherein kinetic effects control their presence in astrophysical regions. To date, only propynal and cyclopropenone, the two less stable isomers of propadienone, have been detected in the interstellar medium.
View Article and Find Full Text PDFChemistry
December 2024
Department of Chemistry and Pharmacy, University of Regensburg, Universitätstr. 31, 93053, Regensburg, Germany.
Herein, we report a mild photocatalytic redox-neutral dehydration of aryl-1,2-ethanediols forming the respective methyl ketones. In the proposed mechanistic cycle an initial hydrogen atom abstraction (HAT) is followed by a 1,2-spin center shift (SCS) as key steps. Interestingly, Eosin Y was found to act as a pre-catalyst dissociating into a catalytically active mixture under irradiation.
View Article and Find Full Text PDFBMC Med
December 2024
Biology Department, Boston College, Chestnut Hill, MA, 02467, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!