Remote functionalization reactions in steroids: discovery and application.

Steroids

Department of Chemistry, The University of the West Indies, Mona, Kingston 7, Jamaica. Electronic address:

Published: April 2024

Research published between 2001 and 2022 on the functionalization of remote positions of steroids, as well as the use of this technique in the generation of biologically active compounds has been reviewed. In the first section of the analysis established and novel methods for activation of sites deemed to be remote were reported. A series of manganese- (mainly), rhodium-, ruthenium- and osmium-centered porphyrins as catalysts in the presence of PIDA as oxidant have effected hydroxylation at C-1, -5, -6, -7, -11, -14, -15, -16, -17, -20, -24 and -25. Dioxiranes have been utilized in inserting hydroxyl groups at the 5, 12, 14, 15, 16, 17, 20, 24 and 25 positions (tertiary centers for the most part). Alcohols at C-12 and -16 were oxidized further to ketones. The Schönecker oxidation, discovered and developed during the period, has revolutionized the selective functionalization at C-12 of steroids possessing a 17-keto group. In the presence of iron-centered PDP- and MCP-based catalysts, hydrogen peroxide and acetic acid, substrates tended to be hydroxylated at C-6 and -12, with further oxidation to ketones often accompanying this reaction. The hypohalite reaction, utilizing the more modern Suarez conditions (irradiation in the presence of iodine and PIDA), was reported to facilitate the insertion of a hydroxyl moiety five atoms away from an existing alcohol oxygen. Steroidal-3β-diazoacetates tend to decompose on heating with di-rhodium-centered catalysts while activating carbons four or five atoms away. Chromium- and iron-based acetates were observed to functionalize C-5 and -25. Other reactions involving ring cleavage and halogenation, ketone irradiation and α-hydroxylation of ethers were also covered. The syntheses of compounds with marked biological activity from readily available steroids is described in the second section of the study. Cyclopamine, cephalostatin-1, ritterazine B and three polyhydroxypregnanaes (pergularin, utendin and tomentogenin) were generated in sequences in which a key step required hydroxylation at C-12 using the Schönecker reaction. A crucial stage in the preparation of cortistatin A, the saundersioside core, eurysterol A, 5,6-dihydroglaucogenin C, as well as clinostatins A and B involved the functionalization of C-18 or -19 utilizing hypohalite chemistry. The synthetic route to xestobergsterol A, pavonin-4-aglycone and ouagabagenin included a transformation where ketone irradiation played a part in either producing a Δ or a C-19 activated steroid. The radical relay reaction, where a 17α-chloro-steroid was formed, was central in the generation of pythocholic acid. The lead tetraacetate reaction was pivotal in the functionalization of C-19 during the synthesis of cyclocitrinol.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.steroids.2023.109362DOI Listing

Publication Analysis

Top Keywords

ketone irradiation
8
reaction
5
remote functionalization
4
functionalization reactions
4
steroids
4
reactions steroids
4
steroids discovery
4
discovery application
4
application published
4
published 2001
4

Similar Publications

Volatile compounds have a deep influence on the quality and application of the medicinal herb ; however, little is known about the effect of UV-B radiation on volatile metabolites. We herein investigated the effects of UV-B exposure on the volatile compounds and transcriptome of to assess the potential for improving its quality and medicinal characteristics. Out of 733 volatiles obtained, a total of 133 differentially expressed metabolites (DEMs) were identified by metabolome analysis.

View Article and Find Full Text PDF

DLBCL cells with ferroptosis morphology can be detected with a deep convolutional neural network.

Biomed Pharmacother

December 2024

Medical Research Center, Oulu University Hospital, Oulu, Finland; Department of Internal Medicine, Länsi-Pohja Central Hospital, Kemi, Finland; Biomedicine and Internal Medicine Research Unit, University of Oulu, Oulu, Finland.

It has been demonstrated that diffuse large B-cell lymphoma (DLBCL) is especially sensitive to ferroptosis. Currently, confirming the presence of ferroptosis requires flow cytometry, which is a time consuming and labor-intensive task. Blistering of the cell membrane has been shown to be a ferroptosis-specific morphological change.

View Article and Find Full Text PDF

VUV photochemistry of cyclopropenone (c-CHO): formation rate and abundance ratios of propynal (HCCCHO) and propadienone (CHCCO).

Phys Chem Chem Phys

December 2024

Sorbonne Université, CNRS, De la Molécule aux Nano-Objets: Réactivité, Interactions, Spectroscopies, MONARIS, Paris, 75005, France.

The distribution of isomeric species in the interstellar medium cannot be directly related to their relative energetic stabilities but more to their mechanisms of formation and evolution. The abundances of the three isomers of CHO, cyclopropenone, propynal and propadienone, are an example among many other interstellar species wherein kinetic effects control their presence in astrophysical regions. To date, only propynal and cyclopropenone, the two less stable isomers of propadienone, have been detected in the interstellar medium.

View Article and Find Full Text PDF

Herein, we report a mild photocatalytic redox-neutral dehydration of aryl-1,2-ethanediols forming the respective methyl ketones. In the proposed mechanistic cycle an initial hydrogen atom abstraction (HAT) is followed by a 1,2-spin center shift (SCS) as key steps. Interestingly, Eosin Y was found to act as a pre-catalyst dissociating into a catalytically active mixture under irradiation.

View Article and Find Full Text PDF
Article Synopsis
  • Glioblastoma (GBM) is the deadliest brain tumor in adults, and current therapies are largely ineffective, which drives the need for new treatment strategies based on the tumor's metabolic needs, specifically glucose and glutamine.
  • A ketogenic metabolic therapy (KMT) approach targets these metabolic pathways by combining dietary changes with specific drugs to limit glycolysis and glutaminolysis, while promoting the use of non-fermentable fuels like ketones and fatty acids.
  • The glucose-ketone index (GKI) serves as a biomarker to monitor treatment effectiveness, aiming to create a more hostile environment for tumor growth and improve outcomes in GBM as well as potentially other cancer types reliant on similar metabolic pathways.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!