New vegetable field converted from rice paddy increases net economic benefits at the expense of enhanced carbon and nitrogen footprints.

Sci Total Environ

Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:

Published: March 2024

China accounts for around 50 % of the global vegetable harvested area which is expected to increase continuously. Large cropland areas, including rice paddy, have been converted into vegetable cultivation to feed an increasingly affluent population and increase farmers' incomes. However, little information is available on the balance between economic benefits and environmental impacts upon rice paddy conversion into vegetable fields, especially during the initial conversion period. Herein, the life cycle assessment approach was applied to compare the differences in agricultural input costs, yield incomes, net economic benefits (NEB), carbon (C) and nitrogen (N) footprints and net ecosystem economic benefits (NEEB) between the double rice paddy (Rice) and newly vegetable field (Veg) converted from Rice based on a four-year field experiment. Results showed that yield incomes from Veg increased by 96-135 %, outweighing the increased agricultural input costs due to higher inputs of labor and pesticide, thus significantly increasing NEB by 80-137 %, as compared to Rice. Rice conversion into Veg largely increased C footprints by 2.3-10 folds and N footprints by 1.1-2.6 folds, consequently increasing the environmental damage costs (EDC) by 2.2 folds on average. The magnitudes of increases in C and N footprints and EDC due to conversion strongly declined over time. The NEEB, the trade-offs between NEB and EDC, decreased by 18 % in the first year, while increasing by 63 % in the second year and further to 135 % in the fourth year upon conversion. These results suggested that rice paddy conversion into vegetable cultivation could increase the NEB at the expense of enhanced EDC, particular during the initial conversion years. Overall, these findings highlight the importance of introducing interventions to mitigate C and N footprints from newly converted vegetable field, so as to maximize NEEB and realize the green and sustainable vegetable production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.170265DOI Listing

Publication Analysis

Top Keywords

rice paddy
20
economic benefits
16
vegetable field
12
rice
9
vegetable
8
converted rice
8
net economic
8
expense enhanced
8
carbon nitrogen
8
nitrogen footprints
8

Similar Publications

Background: Kyasanur forest disease virus (KFDV) is a tick-borne flavivirus causing debilitating and potentially fatal disease in people in the Western Ghats region of India. The transmission cycle is complex, involving multiple vector and host species, but there are significant gaps in ecological knowledge. Empirical data on pathogen-vector-host interactions and incrimination have not been updated since the last century, despite significant local changes in land use and the expansion of KFD to new areas.

View Article and Find Full Text PDF

Bacterial Leaf Blight (BLB) usually attacks rice in the flowering stage and can cause yield losses of up to 50% in severely infected fields. The resulting yield losses severely impact farmers, necessitating compensation from the regulatory authorities. This study introduces a new pipeline specifically designed for detecting BLB in rice fields using unmanned aerial vehicle (UAV) imagery.

View Article and Find Full Text PDF

The impact of straw and biochar on carbon mineralization and the function of carbon cycle genes in paddy soil is important for soil nutrient management and the transformation of carbon pools. This research is based on a five-year field experiment with four treatments: no fertilizer application (CK); chemical fertilizer only (NPK); straw combined with chemical fertilizer (NPKS); and biochar combined with chemical fertilizer (NPKB). By integrating indoor mineralization culture with metagenomic approaches, we analyzed the response of organic carbon mineralization and carbon cycle genes in typical paddy soil from Guizhou Province, China, to different fertilization treatments.

View Article and Find Full Text PDF

Distribution and Environmental Preference of Potential Mercury Methylators in Paddy Soils across China.

Environ Sci Technol

January 2025

National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.

The neurotoxin methylmercury (MeHg) is produced mainly from the transformation of inorganic Hg by microorganisms carrying the gene pair. Paddy soils are known to harbor diverse microbial communities exhibiting varying abilities in methylating inorganic Hg, but their distribution and environmental drivers remain unknown at a large spatial scale. Using gene amplicon sequencing, this study examined Hg-methylating communities from major rice-producing paddy soils across a transect of ∼3600 km and an altitude of ∼1300 m in China.

View Article and Find Full Text PDF

Agricultural amendments enhanced the redox cycling of iron species and hydroxyl radical formation during redox fluctuation of paddy soil.

J Hazard Mater

January 2025

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, PR China. Electronic address:

Hydroxyl radical (OH) plays a critical role in accelerating organic contaminant attenuation during water-table decline in paddy soil, but the impacts of widely applied agricultural amendments (e.g., organic manure, rice straw, and biochar) on these processes have been rarely explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!