The staphylococcal nuclease also referred as micrococcal nuclease (MNase) is a key drug target as the enzyme degrades the neutrophil extracellular trap (NET) and empowers the pathogen to subvert the host innate immune system. To this end, the current study presents a critical evaluation of MNase inhibition rendered by benzimidazole-based ligands (C1 and C2) and probes its therapeutic implications. A nuclease assay indicated that MNase inhibition rendered by C1 and C2 was ∼ 55 % and ∼ 72 %, respectively, at the highest tested concentration of 10 µM. Studies on enzyme kinetics revealed that C2 rendered non-competitive inhibition and significantly reduced MNase turnover number (K) and catalytic efficiency (K/K) with an IC value of ∼ 1122 nM. In CD spectroscopy, a notable perturbation in the β-sheet content of MNase was observed in presence of C2. Fluorescence-microscope analysis indicated that MNase inhibition by C2 could restore entrapment of methicillin-resistant Staphylococcus aureus (MRSA) in calf-thymus DNA (CT-DNA). Flow cytometry and confocal microscope analysis revealed that uptake of DNA-entrapped MRSA by activated THP-1 cells was reinstated by MNase inhibition rendered by C2. Inhibition of nuclease by the non-toxic ligand C2 holds therapeutic prospect as it has the potential to bolster the DNA-mediated entrapment machinery and mitigate MRSA infections.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2024.107133DOI Listing

Publication Analysis

Top Keywords

mnase inhibition
16
inhibition rendered
12
staphylococcal nuclease
8
dna-mediated entrapment
8
indicated mnase
8
inhibition
7
mnase
7
nuclease
5
inhibition staphylococcal
4
nuclease benzimidazole-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!