Automated grading of diabetic retinopathy (DR) is an important means for assisting clinical diagnosis and preventing further retinal damage. However, imbalances and similarities between categories in the DR dataset make it highly challenging to accurately grade the severity of the condition. Furthermore, DR images encompass various lesions, and the pathological relationship information among these lesions can be easily overlooked. For instance, under different severity levels, the varying contributions of different lesions to accurate model grading differ significantly. To address the aforementioned issues, we design a transformer guided category-relation attention network (CRA-Net). Specifically, we propose a novel category attention block that enhances feature information within the class from the perspective of DR image categories, thereby alleviating class imbalance problems. Additionally, we design a lesion relation attention block that captures relationships between lesions by incorporating attention mechanisms in two primary aspects: capsule attention models the relative importance of different lesions, allowing the model to focus on more "informative" ones. Spatial attention captures the global position relationship between lesion features under transformer guidance, facilitating more accurate localization of lesions. Experimental and ablation studies on two datasets DDR and APTOS 2019 demonstrate the effectiveness of CRA-Net and obtain competitive performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2024.107993 | DOI Listing |
Cancers (Basel)
March 2025
Department of Internal Medicine, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea.
The accurate prediction of lymph node metastasis (LNM) and lymphovascular invasion (LVI) is crucial for determining treatment strategies for early gastric cancer (EGC). This study aimed to develop and validate a deep learning-based clinical decision support system (CDSS) to predict LNM including LVI in EGC using real-world data. A deep learning-based CDSS was developed by integrating endoscopic images, demographic data, biopsy pathology, and CT findings from the data of 2927 patients with EGC across five institutions.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
March 2025
Ircad Africa, Kigali, Rwanda.
Purpose: Despite major advances in Computer Assisted Diagnosis (CAD), the need for carefully labeled training data remains an important clinical translation barrier. This work aims to overcome this barrier for ultrasound video-based CAD, using video-level classification labels combined with a novel training strategy to improve the generalization performance of state-of-the-art (SOTA) video classifiers.
Methods: SOTA video classifiers were trained and evaluated on a novel ultrasound video dataset of liver and kidney pathologies, and they all struggled to generalize, especially for kidney pathologies.
Humans and other animals readily generalize abstract relations, such as recognizing constant in shape or color, whereas neural networks struggle. To investigate how neural networks generalize abstract relations, we introduce SimplifiedRPM, a novel benchmark for systematic evaluation. In parallel, we conduct human experiments to benchmark relational difficulty, enabling direct model-human comparisons.
View Article and Find Full Text PDFObjective: The fast accumulation of vast pharmacogenomics data of cancer cell lines provide unprecedented opportunities for drug sensitivity prediction (DSP), a crucial prerequisite for the advancement of precision oncology. Recently, Generative Large Language Models (LLM) have demonstrated performance and generalization prowess across diverse tasks in the field of natural language processing (NLP). However, the structured format of the pharmacogenomics data poses challenge for the utility of LLM in DSP.
View Article and Find Full Text PDFClustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated proteins (Cas) systems have revolutionized genome editing by providing high precision and versatility. However, most genome editing applications rely on a limited number of well-characterized Cas9 and Cas12 variants, constraining the potential for broader genome engineering applications. In this study, we extensively explored Cas9 and Cas12 proteins and developed CasGen, a novel transformer-based deep generative model with margin-based latent space regularization to enhance the quality of newly generative Cas9 and Cas12 proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!