Approaches of marine compounds and relevant immune mediators in Autism Spectrum Disorder: Opportunities and challenges.

Eur J Med Chem

Laboratório de Produtos Naturais de Algas Marinha (ALGAMAR), Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Núcleo de Estudos e Pesquisas em Autismo (NEPA), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Programa de Pós-graduação em Ciência, Tecnologia e Inclusão (PGCTIn), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil. Electronic address:

Published: February 2024

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that affects social skills, language, communication, and behavioral skills, significantly impacting the individual's quality of life. Recently, numerous works have centered on the connections between the immune and central nervous systems and the influence of neuroinflammation on autism symptomatology. Marine natural products are considered as important alternative sources of different types of compounds, including polysaccharides, polyphenols, sterols, carotenoids, terpenoids and, alkaloids. These compounds present anti-inflammatory, neuroprotective and immunomodulatory activities, exhibiting a potential for the treatment of many diseases. Although many studies address the marine compounds in the modulation of inflammatory mediators, there is a gap regarding their use in the regulation of the immune system in ASD. Thus, this review aims to provide a better understanding regarding cytokines, chemokines, growth factors and immune responses in ASD, as well as the potential of bioactive marine compounds in the immune regulation in ASD. We expect that this review would contribute to the development of therapeutic alternatives for controlling immune mediators and inflammation in ASD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2024.116153DOI Listing

Publication Analysis

Top Keywords

marine compounds
12
immune mediators
8
autism spectrum
8
spectrum disorder
8
immune
6
compounds
5
asd
5
approaches marine
4
compounds relevant
4
relevant immune
4

Similar Publications

Three new terpenoid derivatives from the deep-sea-derived fungus DFFSCS007.

J Asian Nat Prod Res

December 2024

CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.

Three new terpenoid derivatives (1,6,7)-hydrobenzosydowic acid (), (1 ,6,7)-hydrobenzosydowic acid (), and (7 ,10)-11-dehydroxy-iso-10-hydroxysydowic acid (), along with the known analogues ()-2-(1-(4-nitrobenzoyl)pyrrolidine-2-carboxamido)benzoic acid () and trihydroxybutyl ester of 4-carboxydiorcinol () were isolated from the deep-sea-derived fungus DFFSCS007. Their structures were determined by spectroscopic analysis. Compound with a nitrobenzene group was isolated from nature for the first time.

View Article and Find Full Text PDF

Background: Plant diseases caused by plant pathogens pose a great threat to biodiversity and food security, and the problem of drug resistance caused by traditional antibiotics and fungicides is becoming more and more serious. It is urgent to develop new antibacterial molecules with low toxicity and high efficiency. Marinoquinoline A is an alkaloid isolated from marine actinomycetes and has a variety of pharmacological activities.

View Article and Find Full Text PDF

Targeted isolation of diketopiperazines from a deep-sea derived fungus with anti-neuroinflammatory effects.

Bioorg Chem

December 2024

State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Ningbo Institute of Marine Medicine, Peking University, Beijing 100191, PR China. Electronic address:

Prenylated indole diketopiperazines represent a diverse array of alkaloids with complex chemical scaffolds and with a wide range of biological activities. Aiming to discover bioactive metabolites with structural novelty, genomic annotation in association with the MS/MS-based molecular networking demonstrated a deep-sea derived fungus Aspergillus puulaauensis F77 containing a profile of diketopiperazines. Targeted separation of the cultured fungus led to the isolation of 19 undescribed austamide-type diketopiperazines namely versicoines A-S.

View Article and Find Full Text PDF

Macroalgae Compound Characterizations and Their Effect on the Ruminal Microbiome in Supplemented Lambs.

Vet Sci

December 2024

Facultad de Agronomía y Veterinaria, Centro de Biociencias, Instituto de Investigaciones en Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78321, Mexico.

The impact of macroalgae species on rumen function remains largely unexplored. This present study aimed to identify the biocompounds of the three types of marine macroalgae described: (Brown), spp. (Lettuce), spp.

View Article and Find Full Text PDF

is the main pathogen of peanut pod rot in China. To investigate the type of toxin and its pathogenic mechanism, a macrolide, brefeldin A, was isolated. The structure of the compound was identified by 1D and 2D nuclear magnetic resonance (NMR) and high-resolution electrospray ionization-mass spectrometry (HR-ESI-MS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!