Effect of hot electron induced charge transfer generated by surface plasmon resonance on Ag@Au/ITO/PNTP systems.

Spectrochim Acta A Mol Biomol Spectrosc

Department of Physics, Liaoning University, Shenyang 110036, PR China. Electronic address:

Published: April 2024

The present study discusses the fabrication of a bimetallic material consisting of silver nanorods and gold nanospheres (designated Ag@Au), and its surface modification with 4-nitrothiophenol (PNTP) after deposition on an indium tin oxide (ITO) glass sheet, followed by laser irradiation at various wavelengths. The results indicate that the reduction of PNTP is more complete under irradiation at 532 nm due to the surface plasmon resonance (SPR) effects of the gold and silver nanomaterials. Moreover, the surface enhanced Raman scattering (SERS) of the PNTP adsorbed on the Ag@Au/ITO is found to be significantly stronger than that of PNTP adsorbed on Ag@Au alone, due to charge transfer (CT) at the interface. In addition, the SERS enhancement effect of the PNTP molecules on the Ag@Au/ITO substrate is optimal under 532 nm laser irradiation due to the hot electron-induced CT generated by the SPR effect. Thus, the system constructed herein combines the effects of SPR and CT, thereby assisting in a further understanding of the enhancement mechanism of SERS and, hence, the further development SERS research in metal-semiconductor-molecular systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2024.123911DOI Listing

Publication Analysis

Top Keywords

charge transfer
8
surface plasmon
8
plasmon resonance
8
laser irradiation
8
pntp adsorbed
8
pntp
5
hot electron
4
electron induced
4
induced charge
4
transfer generated
4

Similar Publications

Hydrogen production via water-splitting or ammonia electrolysis using transition metal-based electrodes is one of the most cost-effective approaches. Herein, ca. 1-4% of Pt atoms are stuffed into a wolframite-type NiWO lattice to improve the electrocatalytic efficiency.

View Article and Find Full Text PDF

ConspectusThe discovery of reversible hydrogenation using metal-free phosphoborate species in 2006 marked the official advent of frustrated Lewis pair (FLP) chemistry. This breakthrough revolutionized homogeneous catalysis approaches and paved the way for innovative catalytic strategies. The unique reactivity of FLPs is attributed to the Lewis base (LB) and Lewis acid (LA) sites either in spatial separation or in equilibrium, which actively react with molecules.

View Article and Find Full Text PDF

Based on the DCV-C system of fullerene acceptor organic solar cell active materials, the charge transfer process of D-A type molecular materials under the action of an external electric field () was explored. Within the range of electric field application, the excited state characteristics exhibit certain regular changes. Based on reducing the excitation energy, the excitation mode shows a trend of developing toward low excited states.

View Article and Find Full Text PDF

Ultrafast Charge Carrier Dynamics in Vanadium Dioxide, VO: Nonequilibrium Contributions to the Photoinduced Phase Transitions.

J Phys Chem Lett

January 2025

Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States.

Vanadium oxide (VO) is an exotic phase-change material with diverse applications ranging from thermochromic smart windows to thermal sensors, neuromorphic computing, and tunable metasurfaces. Nonetheless, the mechanism responsible for its metal-insulator phase transition remains a subject of vigorous debate. Here, we investigate the ultrafast dynamics of the photoinduced phase transition in VO under low perturbation conditions.

View Article and Find Full Text PDF

Peptide-Perovskite Based Bio-Inspired Materials for Optoelectronics Applications.

Adv Sci (Weinh)

January 2025

BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain.

The growing demand for environmentally friendly semiconductors that can be tailored and developed easily is compelling researchers and technologists to design inherently bio-compatible, self-assembling nanostructures with tunable semiconducting characteristics. Peptide-based bioinspired materials exhibit a variety of supramolecular morphologies and have the potential to function as organic semiconductors. Such biologically or naturally derived peptides with intrinsic semiconducting characteristics create new opportunities for sustainable biomolecule-based optoelectronics devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!