Gefitinib, a highly significant antitumor drug, is now commonly employed in clinical settings as a first-line treatment for patients with advanced or metastatic non-small cell lung cancer, colon cancer, and breast cancer. Herein, a convenient, rapid, and accurate fluorescence method based on nitrogen-doped carbon dots (NCDs) was designed for ultrasensitive detection of gefitinib. The NCDs were easily synthesized through one-pot hydrothermal process using p-phenylenediamine and D-glutamic acid as the precursors. The sensing strategy relied on the fluorescence of NCDs at 345 nm, which was selectively reduced by gefitinib based on the inner filter effect (IFE). With a broad linear range of 0.025-30 μg/mL and a low limit of detection of 5.5 ng/mL, the probe was successfully applied to the detection of gefitinib in human serum samples, demonstrating strong practicality, affordability, and high accuracy. The proposed sensor is simple in design, fast in detection and cost-effective, and exhibits promising application in drug real-time analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2024.123942DOI Listing

Publication Analysis

Top Keywords

nitrogen-doped carbon
8
carbon dots
8
ultrasensitive detection
8
gefitinib based
8
detection gefitinib
8
detection
5
gefitinib
5
facile synthesis
4
synthesis nitrogen-doped
4
dots ultrasensitive
4

Similar Publications

In this study, nitrogen-doped carbon nanodots (N-CDs) with temperature and fluorescence sensing were prepared via hydrothermal method using L-lysine and ethylenediamine as precursors. The synthesized N-CDs exhibited spherical morphology with sizes ranging from 2.8 to 5.

View Article and Find Full Text PDF

Transition-metal nitrides (TMNs) have garnered considerable attention for energy conversion applications owing to their exceptional electronic structures and high catalytic activities. However, the scarcity of active sites in TMNs impedes their large-scale application. This study describes the use of wetness impregnation and ionic-liquid methods to enhance the electrocatalytic efficiency of molybdenum nitride (MoN) atomic clusters finely dispersed on nitrogen-doped carbon (MoN@NC) substrates.

View Article and Find Full Text PDF

Fluorescent carbon quantum dots (CDs) have received widespread attention for their potential applications in optical sensing. Meanwhile, as the importance of mercury ion (Hg) detection in the environment, the exploration of Hg fluorescent nanosensor based on CDs with high quantum yield is particularly intriguing. Herein, nitrogen-doped carbon quantum dots (N-CDs) were prepared by microwave method using citric acid as carbon source and urea as nitrogen source, and glycerol as microwave solvent.

View Article and Find Full Text PDF

Role of Mesoporosity in Hard Carbon Anodes for High-Energy and Stable Potassium-Ion Storage.

Small

January 2025

Department of Material Science Engineering, Gachon University, Seongnamdaero 1342, Seongnam, 13120, Republic of Korea.

Herein, NaCl-templated mesoporous hard carbons (NMCs) have been designed and engineered with tunable surface properties as anode materials for potassium-ion batteries (KIBs) and hybrid capacitors (KICs). By utilizing "water-in-oil" emulsions, the size of NaCl templates is precisely modified, leading to smaller particles that enable the formation of primary carbon structures with reduced particle size and secondary structures with 3D interconnected mesoporosity. These features significantly enhance electrode density, reduce particle-to-particle resistance, and improve electrolyte wettability.

View Article and Find Full Text PDF

Confining CoSe/MoSe2 Heterostructures in Interconnected Carbon Polyhedrons for Superior Potassium Storage.

ChemSusChem

January 2025

Jilin University, School of Materials Science and Engineering, Renmin street 5988, School of Materials Science and Engineering, Jilin University, 130022, Changchun, CHINA.

Metal selenides hold promise as feasible anode materials for potassium-ion batteries (PIBs), but still face problems such as poor potassium storage kinetics and dramatic volume expansion. Coupling heterostructure engineering with structural design could be an effective strategy for rapid and stable K+ storage. Herein, CoSe/MoSe2 heterojunction encapsulated in nitrogen-doped carbon polyhedron and further interconnected by three-dimensional nitrogen-doped carbon nanofibers (CoMoSe@NCP/NCFs) is ingeniously constructed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!